SECTION III - SPORTS AND PHYSICAL ACTIVITY / RESEARCH PAPER
The Impact of Anthropometric Characteristics
and Motor Abilities on Match Running Performance (MRP)
in Elite Soccer Players: A Multiple Regression Approach
More details
Hide details
1
Institute of Information Technologies, University of Kragujevac, Kragujevac, Serbia.
2
Bioengineering Research and Development Center, Kragujevac, Serbia.
3
Montenergin Sports Academy, Podgorica, Montenegro.
4
Faculty of Sport and Physical Education, University of Niš, Niš, Serbia.
5
Faculty of Kinesiology, University of Split, Split, Croatia.
6
Virovitica County hospital, Virovitica, Croatia.
These authors had equal contribution to this work
Submission date: 2025-01-12
Final revision date: 2025-04-30
Acceptance date: 2025-06-24
Online publication date: 2025-11-19
Corresponding author
Mima Stankovic
Faculty of sport and physical education, Niš, University of Nis, Faculty of sport and physical education, Niš, University of Nis, Serbia
KEYWORDS
TOPICS
ABSTRACT
The aim of the study was to examine the impact of anthropometric characteristics and motor abilities on match running performance (MRP) in elite soccer players. For this purpose, a sample of 41 professional soccer players was evaluated considering five anthropometric characteristics, 11 motor abilities (including sprint and acceleration performance, agility, power, and endurance) as regressors, and six variables describing MRP (time spent in running at < 8 km/h, 8–15 km/h, 15.1–19 km/h, 19.1–23 km/h, > 23 km/h and total time spent in running) as criteria. Regression analysis identified significant regression models (p < 0.05) predicting 8.1–15 km/h, 19.1–23 km/h, and total time spent in running variables for both sets of regressors, with morphology explaining 29.6%, 29.8%, and 37.4%, and motor abilities explaining 59.6%, 65.9% and 68.7% of criterion variables, respectively. It can be concluded that body composition variables such as muscle and fat percentages are associated with jogging, high-speed running, and total distance covered, whilst sprinting variables at 10, 20, and 30 m, the 10/20 index, and the CMJ are associated with jogging and total distance covered. Also, the squat jump is associated with jogging, while shuttle run test performance is associated with high-speed running only. Results provide deep insight into the structure of relationships between MRP and both morphological and motor variables, which are essential to structure advanced training systems focused on optimization of MRP in elite soccer players.
REFERENCES (82)
1.
Andrzejewski, M., Chmura, J., Pluta, B., Strzelczyk, R., & Kasprzak, A. (2013). Analysis of sprinting activities of professional soccer players. Journal of Strength & Conditioning Research, 27(8), 2134–2140. doi:10.1519/JSC.0b013e318279423e.
2.
Arslan, E., Kilit, B., Clemente, F. M., Murawska-Ciałowicz, E., Soylu, Y., Sogut, M., ... Silva, A. F. (2022). Effects of small-sided games training versus high-intensity interval training approaches in young basketball players. International Journal of Environmental Research and Public Health, 19(5), 2931. doi:10.3390/ijerph19052931.
3.
Asimakidis, N. D., Bishop, C. J., Beato, M., Mukandi, I. N., Kelly, A. L., Weldon, A., & Turner, A. N. (2024a). A survey into the current fitness testing practices of elite male soccer practitioners: from assessment to communicating results. Frontiers in Physiology, 15, 1376047. doi:10.3389/fphys.2024.1376047.
4.
Asimakidis, N. D., Mukandi, I. N., Beato, M., Bishop, C., & Turner, A. N. (2024b). Assessment of strength and power capacities in elite male soccer: a systematic review of test protocols used in practice and research. Sports Medicine, 54, 1–38. doi:10.1007/s40279-024-02071-8.
5.
Association, W. M. (2013). World medical association declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA, 310(20), 2191. doi:10.1001/jama.2013.281053.
6.
Aquino, R., Carling, C., Maia, J., Vieira, L. H. P., Wilson, R. S., Smith, N., ... & Puggina, E. F. (2020). Relationships between running demands in soccer match-play, anthropometric, and physical fitness characteristics: a systematic review. International Journal of Performance Analysis in Sport, 20(3), 534–555. doi:10.1080/24748668.2020.1746555.
7.
Aquino, R., Palucci Vieira, L. H., de Paula Oliveira, L., Cruz Gonzales, L. G., & Pereira Santiago, P. R. (2017). Relationship between field tests and match running performance in high-level young Brazilian soccer players. Journal of Sports Medicine and Physical Fitness, 58(3), 256–262. doi:10.23736/s0022-4707.17.06651-8.
8.
Barrera, J., Figueiredo, A. J., Duarte, J., Field, A., & Sarmento, H. (2023). Predictors of linear sprint performance in professional football players. Biology of Sport, 40(2), 359–364. doi:10.5114/biolsport.2023.114289.
9.
Bongiovanni, T., Trecroci, A., Cavaggioni, L., Rossi, A., Perri, E., Pasta, G., ... & Alberti, G. (2021). Importance of anthropometric features to predict physical performance in elite youth soccer: A machine learning approach. Research in Sports Medicine, 29(3), 213–224. doi:10.1080/15438627.2020.1809410.
10.
Buchheit, M., & Mendez-Villanueva, A. (2014). Effects of age, maturity and body dimensions on match running performance in highly trained under-15 soccer players. Journal of Sports Sciences, 32(13), 1271–1278. doi:10.1080/02640414.2014.884721.
11.
Buchheit, M., Mendez-Villanueva, A., Simpson, B. M., & Bourdon, P. C. (2010). Match running performance and fitness in youth soccer. International Journal of Sports Medicine, 31(11), 818–825. doi:10.1055/s-0030-1262838.
12.
Campa, F., Semprini, G., Júdice, P. B., Messina, G., & Toselli, S. (2019). Anthropometry, physical and movement features, and repeated-sprint ability in soccer players. International Journal of Sports Medicine, 40(2), 100–109. doi:10.1055/a-0781-2473.
13.
Castagna, C., & Castellini, E. (2013). Vertical jump performance in Italian male and female national team soccer players. Journal of Strength & Conditioning Research, 27(4), 1156–1161. doi:10.1519/JSC.0b013e3182610999.
14.
Castagna, C., Impellizzeri, F., Cecchini, E., Rampinini, E., & Alvarez, J. C. B. (2009). Effects of intermittent-endurance fitness on match performance in young male soccer players. Journal of Strength & Conditioning Research, 23(7), 1954–1959. doi:10.1519/JSC.0b013e3181b7f743.
15.
Castagna, C., Manzi, V., Impellizzeri, F., Weston, M., & Alvarez, J. C. B. (2010). Relationship between endurance field tests and match performance in young soccer players. Journal of Strength & Conditioning Research, 24(12), 3227–3233. doi:10.1519/JSC.0b013e3181e72709.
16.
Čaprić, I., Stanković, M., Manić, M., Preljević, A., Špirtović, O., Đorđević, D., ... & Trajković, N. (2022). Effects of plyometric training on agility in male soccer players—a systematic review. Journal of Men’s Health, 18(7), 147–158. doi:10.31083/j.jomh1807147.
17.
Colosio, A. L., Lievens, M., Pogliaghi, S., Bourgois, J. G., & Boone, J. (2020). Heart rate-index estimates aerobic metabolism in professional soccer players. Journal of Science and Medicine in Sport, 23(12), 1208–1214. doi:10.1016/j.jsams.2020.04.015.
18.
Cormie, P., McBride, J. M., & McCaulley, G. O. (2009). Power-time, force-time, and velocity-time curve analysis of the countermovement jump: impact of training. Journal of Strength & Conditioning Research, 23(1), 177–186. doi:10.1519/JSC.0b013e3181889324.
19.
Cug, M., Stankovic, M., Katanic, B., Djordjevic, S., & Masanovic, B. (2024). Seasonal Changes in Anthropometric Characteristics and Body Composition of Elite Montenegrin Football Players. International Journal of Morphology, 42(5), 1306–1311. doi:10.4067/S0717-95022024000501306.
20.
Di Salvo, V., Collins, A., Barry, M.N., & Cardinale, M. (2006). Validation of Prozone®: A new video-based performance analysis system. International Journal of Performance Analysis in Sport, 6(1), 108–119. doi:10.1080/24748668.2006.11868359.
21.
Di Salvo, V., Pigozzi, F., Gonzalez-Haro, C., Laughlin, M. S., & De Witt, J. K. (2013). Match performance comparison in top English soccer leagues. International Journal of Sports Medicine, 34(06), 526–532. doi:10.1055/s-0032-1327660.
22.
Drust, B., Atkinson, G., & Reilly, T. (2007). Future perspectives in the evaluation of the physiological demands of soccer. Sports Medicine, 37(1), 783–805. doi:10.2165/00007256-200737090-00003.
23.
Dupont, G., Akakpo, K., & Berthoin, S. (2004). The effect of in-season, high-intensity interval training in soccer players. Journal of Strength & Conditioning Research, 18(3), 584–589. doi:10.1519/1533-4287(2004)18<584:TEOIHI>2.0.CO;2.
24.
Ehrmann, F. E., Duncan, C. S., Sindhusake, D., Franzsen, W. N., & Greene, D. A. (2016). GPS and injury prevention in professional soccer. Journal of Strength & Conditioning Research, 30(2), 360–367. doi:10.1519/JSC.0000000000001093.
25.
Enoka, R. M., & Duchateau, J. (2008). Muscle fatigue: what, why and how it influences muscle function. Journal of Physiology, 586(1), 11–23. doi:10.1113/jphysiol.2007.139477.
26.
Esco, M. R., Fedewa, M. V., Cicone, Z. S., Sinelnikov, O. A., Sekulic, D., & Holmes, C. J. (2018). Field-based performance tests are related to body fat percentage and fat-free mass, but not body mass index, in youth soccer players. Sports, 6(4), 105. doi:10.3390/sports6040105.
27.
Eston, R. G., & Reilly, T. (2009). Kinanthropometry and exercise physiology laboratory manual: exercise physiology (Vol. 2). Taylor & Francis.
28.
Fernandes, T., Camerino, O., Garganta, J., Pereira, R., & Barreira, D. (2019). Design and validation of an observational instrument for defence in soccer based on the Dynamical Systems Theory. International Journal of Sports Science & Coaching, 14(2), 138–152. doi:10.1177/1747954119827283.
29.
Filter, A., Olivares-Jabalera, J., Dos' Santos, T., Madruga, M., Lozano, J., Molina, A., ... & Loturco, I. (2023). High-intensity actions in elite soccer: Current status and future perspectives. International Journal of Sports Medicine, 44(08), 535–544. doi:10.1055/a-2013-1661.
30.
Gardasevic, J., Bjelica, D., & Vasiljevic, I. (2019). Morphological Characteristics and Body Composition of Elite Soccer Players in Montenegro. International Journal of Morphology, 37(1), 284–288. doi:10.4067/S0717-95022019000100284.
31.
Glaister, M. (2005). Multiple sprint work: physiological responses, mechanisms of fatigue and the influence of aerobic fitness. Sports Medicine, 35, 757–777. doi:10.2165/00007256-200535090-00003.
32.
Glatthorn, J. F., Gouge, S., Nussbaumer, S., Stauffacher, S., Impellizzeri, F. M., & Maffiuletti, N. A. (2011). Validity and reliability of Optojump photoelectric cells for estimating vertical jump height. Journal of Strength & Conditioning Research, 25(2), 556–560. doi:10.1519/JSC.0b013e3181ccb18d.
33.
Gomez-Piqueras, P., Gonzalez-Villora, S., Castellano, J., & Teoldo, I. (2019). Relation between the physical demands and success in professional soccer players. Journal of Human Sport and Exercise, 14(1), 1–11. doi:10.14198/jhse.2019.141.01.
34.
Gonçalves, L., Clemente, F. M., Barrera, J. I., Sarmento, H., González-Fernández, F. T., Palucci Vieira, L. H., ... & Carral, J. C. (2021). Relationships between fitness status and match running performance in adult women soccer players: A cohort study. Medicina, 57(6), 617. doi:10.3390/medicina57060617.
35.
Hazir, T. (2010). Physical characteristics and somatotype of soccer players according to playing level and position. Journal of Human Kinetics, 26(1), 83–95. doi:10.2478/v10078-010-0052-z.
36.
Hulton, A. T., Malone, J. J., Clarke, N. D., & MacLaren, D. P. (2022). Energy requirements and nutritional strategies for male soccer players: A review and suggestions for practice. Nutrients, 14(3), 657. doi:10.3390/nu14030657.
37.
Jastrzębski, Z., Wakuluk-Lewandowska, D., Arslan, E., Kilit, B., Soylu, Y., & Radzimiński, Ł. (2025). Effects of Eight-Week Game-Based High-Intensity Interval Training Performed on Different Pitch Dimensions on the Level of Physical Capacity and Time-Motion Responses in Youth Soccer Players. Journal of Human Kinetics, 97, 157–168.
https://doi.org/10.5114/jhk/19....
38.
Jerkovic, Z., Modric, T., & Versic, S. (2022). Analysis of the associations between contextual variables and match running performance in Croatian First Division Soccer. Sport Mont, 20(2), 125–130. doi:10.26773/smj.220619.
39.
Kaplan, T., Erkmen, N., & Taskin, H. (2009). The evaluation of the running speed and agility performance in professional and amateur soccer players. Journal of Strength & Conditioning Research, 23(3), 774–778. doi:10.1519/JSC.0b013e3181a079ae.
40.
Katanic, B., Bjelica, D., & Milosevic, Z. (2023). Positional differences in body composition of elite football players: An investigation of FC Red Star, Serbia. In Proceedings of the 17th European Congress “100 Years of FIEPS” (p. 76). Physical Education and Sport Faculty, Galati, Romania.
41.
Krustrup, P., Mohr, M., Amstrup, T., Rysgaard, T., Johansen, J., Steensberg, A., ... & Bangsbo, J. (2003). The yo-yo intermittent recovery test: physiological response, reliability, and validity. Medicine & Science in Sports & Exercise, 35(4), 697–705. doi:10.1249/01.MSS.0000058441.94520.32.
42.
Kubayi, A., & Toriola, A. (2020). Match performance indicators that discriminated between winning, drawing and losing teams in the 2017 AFCON Soccer Championship. Journal of Human Kinetics, 72(1), 215–221. doi:10.2478/hukin-2019-0108.
43.
Lago-Peñas, C., Rey, E., Lago-Ballesteros, J., Casais, L., & Dominguez, E. (2009). Analysis of work-rate in soccer according to playing positions. International Journal of Performance Analysis in Sport, 9(2), 218–227. doi:10.1080/24748668.2009.11868478.
44.
Lemmink, K. A., Visscher, C., Lambert, M. I., & Lamberts, R. P. (2004). The interval shuttle run test for intermittent sport players: evaluation of reliability. Journal of Strength & Conditioning Research, 18(4), 821–827. doi:10.1519/13993.1.
45.
Lesinski, M., Prieske, O., Helm, N., & Granacher, U. (2017). Effects of soccer training on anthropometry, body composition, and physical fitness during a soccer season in female elite young athletes: A prospective cohort study. Frontiers in Physiology, 8, 1093. doi:10.3389/fphys.2017.01093.
46.
Markovic, G., Dizdar, D., Jukic, I., & Cardinale, M. (2004). Reliability and factorial validity of squat and countermovement jump tests. Journal of Strength & Conditioning Research, 18(3), 551–555. doi:10.1519/1533-4287(2004)18<551:RAFVOS>2.0.CO;2.
47.
Martín Moreno, V., Gómez Gandoy, B., Antoranz González, M., Fernández Herranz, S., Gómez De La Cámara, A., & de Oya Otero, M. (2001). Validation of the Omron BF 300 monitor for measuring body fat by bioelectric impedance. Atencion Primaria, 28(3), 174–181. doi:10.1016/s0212-6567(01)78927-5.
48.
Mirkov, D., Nedeljkovic, A., Kukolj, M., Ugarkovic, D., & Jaric, S. (2008). Evaluation of the reliability of soccer-specific field tests. Journal of Strength & Conditioning Research, 22(4), 1046–1050. doi:10.1519/JSC.0b013e31816eb4af.
49.
Modric, T., Versic, S., Sekulic, D., & Liposek, S. (2019). Analysis of the association between running performance and game performance indicators in professional soccer players. International Journal of Environmental Research and Public Health, 16(20), 4032. doi:10.3390/ijerph16204032.
50.
Morgans, R., Orme, P., Bezuglov, E., & Di Michele, R. (2023). Technical and physical performance across five consecutive seasons in elite European Soccer. International Journal of Sports Science & Coaching, 18(3), 839–847. doi:10.1177/17479541221089247.
51.
Nassis, G. P., Geladas, N. D., Soldatos, Y., Sotiropoulos, A., Bekris, V., & Souglis, A. (2010). Relationship between the 20-m multistage shuttle run test and 2 soccer-specific field tests for the assessment of aerobic fitness in adult semi-professional soccer players. Journal of Strength & Conditioning Research, 24(10), 2693–2697. doi:10.1519/JSC.0b013e3181bf0471.
52.
Northeast, J., Russell, M., Shearer, D., Cook, C. J., & Kilduff, L. P. (2019). Predictors of linear and multidirectional acceleration in elite soccer players. Journal of Strength & Conditioning Research, 33(2), 514–522. doi:10.1519/JSC.0000000000001897.
53.
Ouerghi, N., Fradj, M. K. B., Bezrati, I., Khammassi, M., Feki, M., Kaabachi, N., & Bouassida, A. (2017). Effects of high-intensity interval training on body composition, aerobic and anaerobic performance and plasma lipids in overweight/obese and normal-weight young men. Biology of Sport, 34(4), 385–392. doi:10.5114/biolsport.2017.69827.
54.
Papla, M., Krzysztofik, M., Wojdala, G., Roczniok, R., Oslizlo, M., & Golas, A. (2020). Relationships between linear sprint, lower-body power output and change of direction performance in elite soccer players. International Journal of Environmental Research and Public Health, 17(17), 6119. doi:10.3390/ijerph17176119.
55.
Parpa, K., Katanic, B., & Michaelides, M. (2024). Seasonal variation and the effect of the transition period on physical fitness parameters in youth female soccer players. Sports, 12(3), 84. doi:10.3390/sports12030084.
56.
Perroni, F., Amatori, S., Corsi, L., Bensi, R., Guidetti, L., Baldari, C. ... & Buzzachera, C. F. (2024). Assessment of Performance in Youth Soccer Players: Should We Consider the Maturation Status?. Journal of Human Kinetics, 93, 119–131.
https://doi.org/10.5114/jhk/18....
57.
Ponce-Bordón, J. C., López-Gajardo, M. A., Lobo-Triviño, D., Pulido, J. J., & García-Calvo, T. (2024). Longitudinal match running performance analysis of soccer in professional European leagues: A systematic review. International Journal of Performance Analysis in Sport, 24(6), 601–625. doi:10.1080/24748668.2024.2343579.
58.
Pribyl, M. I., Smith, J. D., & Grimes, G. R. (2011). Accuracy of the Omron HBF-500 body composition monitor in male and female college students. International Journal of Exercise Science, 4(2), 93–101. doi:10.70252/PRGW4132.
59.
Radakovic, R., Dasic, L., Dopsaj, M., & Filipovic, N. (2024a). Multiple regression analysis for competitive performance assessment of professional soccer players. Technology and Health Care, 32(2), 873–884. doi:10.3233/THC-230275.
60.
Radaković, R., Dopsaj, M., & Filipović, N. (2020). Internal and external validity of the movement range measurement of top soccer players during the match measured using the Software System Tracking Motion BIOIRC. Sport and Health, 1, 59–70. doi:10.7251/SIZEN2001142R.
61.
Radakovic, R., Dopsaj, M., Vulovic, R., Leontijevic, B., Mijailovic, N., Filipovic,N. (2015). The reliability of motion analysis of elite soccer players during match measured by the Tracking Motion software system, In IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE) (pp. 1–6). Belgrade, Serbia. doi: 10.1109/BIBE.2015.7367676.
62.
Radaković, R., Katanić, B., Stanković, M., Masanovic, B., & Fišer, S. Ž. (2024b). The Impact of Cardiorespiratory and Metabolic Parameters on Match Running Performance (MRP) in National-Level Football Players: A Multiple Regression Analysis. Applied Sciences, 14(9), 3807. doi:10.3390/app14093807.
63.
Radzimiński, Ł., Szwarc, A., Padrón-Cabo, A., & Jastrzębski, Z. (2019). Correlations between body composition, aerobic capacity, speed and distance covered among professional soccer players during official matches. Journal of Sports Medicine and Physical Fitness, 60(2), 257–262. doi:10.23736/S0022-4707.19.09979-1.
64.
Rago, V., Silva, J. R., Mohr, M., Barreira, D., Krustrup, P., & Rebelo, A. N. (2018). The inter-individual relationship between training status and activity pattern during small-sided and full-sized games in professional male football players. Science and Medicine in Football, 2(2), 115–122. doi:10.1080/24733938.2017.1414953.
65.
Rampinini, E., Bishop, D., Marcora, S. M., Bravo, D. F., Sassi, R., & Impellizzeri, F. M. (2006). Validity of simple field tests as indicators of match-related physical performance in top-level professional soccer players. International Journal of Sports Medicine, 28(3), 228–235. doi:10.1055/s-2006-924340.
66.
Ramsbottom, R., Brewer, J., & Williams, C. (1988). A progressive shuttle run test to estimate maximal oxygen uptake. British Journal of Sports Medicine, 22(4), 141–144.
67.
Ré, A. H., Cattuzzo, T. M., Santos, F. M., & Monteiro, C. B. (2014). Anthropometric characteristics, field test scores and match-related technical performance in youth indoor soccer players with different playing status. International Journal of Performance Analysis in Sport, 14(2), 482–492. doi:10.1080/24748668.2014.11868737.
68.
Reichert, L., Hacker, S., Mutz, M., Raab, M., Wiese, L., Krüger, K., & Zentgraf, K. (2025). How Much Can the Genotype Predict Phenotypical Power Performance in Elite Male and Female Athletes?. Journal of Human Kinetics, 95, 95–109.
https://doi.org/10.5114/jhk/19....
69.
Rienzi, E., Drust, B., Reilly, T., Carter, J. E. X. L., & Martin, A. (2000). Investigation of anthropometric and work-rate profiles of elite South American international soccer players. Journal of Sports Medicine and Physical Fitness, 40(2), 162.
70.
Ross, A., Leveritt, M., & Riek, S. (2001). Neural influences on sprint running: training adaptations and acute responses. Sports Medicine, 31(6), 409-425. doi:10.2165/00007256-200131060-00002.
71.
Sarmento, H., Marcelino, R., Anguera, M. T., CampaniÇo, J., Matos, N., & LeitÃo, J. C. (2014). Match analysis in football: a systematic review. Journal of Sports Sciences, 32(20), 1831–1843. doi:10.1080/02640414.2014.898852.
72.
Savolainen, E., Vänttinen, T., Ihalainen, J., & Walker, S. (2023). Physical qualities and body composition predictors of running performance in national level women’s official soccer matches. Biology of Sport, 40(4), 1187–1195. doi:10.5114/biolsport.2023.118026.
73.
Slimani, M., & Nikolaidis, P. T. (2017). Anthropometric and physiological characteristics of male soccer players according to their competitive level, playing position, and age group: A systematic review. Journal of Sports Medicine and Physical Fitness, 59(2), 141–163. doi:10.23736/S0022-4707.17.07950-6.
74.
Sonesson, S., Lindblom, H., & Hägglund, M. (2021). Performance on sprint, agility and jump tests have moderate to strong correlations in youth football players but performance tests are weakly correlated to neuromuscular control tests. Knee Surgery, Sports Traumatology, Arthroscopy, 29(5), 1659–1669. doi:10.1007/s00167-020-06302-z.
75.
Sporiš, G., Dujić, I., Trajković, N., Milanović, Z., & Madić, D. (2017). Relationship between morphological characteristics and match performance in junior soccer players. International Journal of Morphology, 35(1), 37–41. doi:10.4067/S0717-95022017000100007.
76.
Stankovic, M., Djordjevic, D., Trajkovic, N., & Milanovic, Z. (2023). Effects of High-Intensity Interval Training (HIIT) on Physical Performance in Female Team Sports: A Systematic Review. Sports Medicine-Open, 9(1), 78. doi:10.1186/s40798-023-00623-2.
77.
Stanković, M., Đorđević, D., Andrašić, S., Tomac, Z., Vlahović, T., Franić, M., ... & Trajković, N. (2022). Gym Versus Home-Based Training During Transition Period in Adolescent Soccer Players: Effects on Physical Performance. Journal of Men's Health, 18(6), 134. doi:10.31083/j.jomh1806134.
78.
Tomlin, D. L., & Wenger, H. A. (2001). The relationship between aerobic fitness and recovery from high intensity intermittent exercise. Sports Medicine, 31, 1–11. doi:10.2165/00007256-200131010-00001.
79.
Versic, S., Modric, T., Katanic, B., Jelicic, M., & Sekulic, D. (2022). Analysis of the Association between Internal and External Training Load Indicators in Elite Soccer; Multiple Regression Study. Sports, 10(9), 135. doi:10.3390/sports10090135.
80.
Waldron, M., & Worsfold, P. (2010). Differences in the game specific skills of elite and sub-elite youth football players: Implications for talent identification. International Journal of Performance Analysis in Sport, 10(1), 9–24. doi:10.1080/24748668.2010.11868497.
81.
Walker, S., & Turner, A. (2009). A one-day field test battery for the assessment of aerobic capacity, anaerobic capacity, speed, and agility of soccer players. Strength & Conditioning Journal, 31(6), 52–60. doi:10.1519/SSC.0b013e3181c22085.
82.
Zagatto, A. M., Papoti, M., Da Silva, A. S. R., Barbieri, R. A., Campos, E. Z., Ferreira, E. C., ... & Chamari, K. (2016). The Hoff circuit test is more specific than an incremental treadmill test to assess endurance with the ball in youth soccer players. Biology of Sport, 33(3), 263–268. doi:10.5604/20831862.1201913.