Lower Limb Skeletal Robustness Determines the Change of Directional Speed Performance in Youth Ice Hockey
 
More details
Hide details
1
Department of Sport Games, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
 
2
Institute of Sports Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
 
 
Publication date: 2023-02-16
 
 
Journal of Human Kinetics 2022;85:75-85
 
KEYWORDS
ABSTRACT
The factors that influence the on-ice change of directional speed (COD) of ice hockey players remain unclear. Therefore, this study aimed to determine which off-ice and anthropometric variables determine hockey COD with and without a puck. Thirty-two elite ice hockey players (age: 17.64 ± 1.02 years, body height: 180 ± 7.5 cm, body mass: 76.4 ± 7.8 kg) performed squat jumps, broad jumps, countermovement jumps, and pull-ups and were assessed on agility office and on-ice, with and without a puck. Anthropometric characteristics were determined according to the modified somatotype method. A moderate correlation (r = 0.59–0.6) was observed among all agility tests, between on-ice agility with a puck and lower limb skeletal robustness (r = 0.45), and between on-ice agility with a puck and sit-and-reach scores (r = -0.50). Agility without a puck correlated with squat jump height (r = -0.36). Multiple regression analysis indicated that off-ice agility (β = 0.51) and skeletal robustness of the lower limbs (β = 0.35) determined (R2 = 0.41) on-ice agility with a puck. Players’ COD was assessed by Illinois tests of agility off-ice and on-ice, with and without a puck; each of these tests moderately predicted the others, but differed in their physical constraints. Players with higher skeletal robustness used more strength and power to achieve COD performance, while players with lower skeletal robustness used techniques and skills to achieve COD, resulting in superior COD performance with a puck compared to stronger athletes. CODs with and without a puck are discrete skills requiring different abilities.
 
REFERENCES (57)
1.
Allisse, M., Bui, H. T., Desjardins, P., Léger, L., Comtois, A. S., & Leone, M. (2019). Assessment of On-Ice Oxygen Cost of Skating Performance in Elite Youth Ice Hockey Players. Journal of Strength and Conditioning Research, 35(12), 3466–3473. doi:10.1519/jsc.0000000000003324.
 
2.
Burr, J. F., Jamnik, R. K., Baker, J., Macpherson, A., Gledhill, N., & McGuire, E. J. (2008). Relationship of physical fitness test results and hockey playing potential in elite-level ice hockey players. Journal of Strength and Conditioning Research, 22(5), 1535–1543. doi:10.1519/JSC.0b013e318181ac20.
 
3.
Burr, J. F., Jamnik, V. K., Dogra, S., & Gledhill, N. (2007). Evaluation of jump protocols to assess leg power and predict hockey playing potential. Journal of Strength and Conditioning Research, 21(4), 1139–1145. doi:10.1519/r-21496.1.
 
4.
Carter, J. L., Carter, J. L., & Heath, B. H. (1990). Somatotyping: development and applications (Vol. 5): Cambridge University Press, New York, USA.
 
5.
Czeck, M. A., Roelofs, E. J., Dietz, C., Bosch, T. A., & Dengel, D. R. (2022). Body Composition and On-Ice Skate Times for National Collegiate Athletic Association Division I Collegiate Male and Female Ice Hockey Athletes. Journal of Strength and Conditioning Research, 36(1), 187–192. doi:10.1519/jsc.0000000000004175.
 
6.
Coyne, J. O., Tran, T. T., Secomb, J. L., Lundgren, L., Farley, O. R., Newton, R. U., & Sheppard, J. M. (2015). Reliability of pull up & dip maximal strength tests. Journal of Austalian Strength and Conditioning, 23, 21–27.
 
7.
Daigle, A.-P., Brunelle, J., Belanger, S., & Lemoyne, J. (2022). Functional performance tests, on-ice testing and game performance in elite junior ice hockey players. Journal of Human Kinetics. ahead of print.
 
8.
Delisle-Houde, P., Chiarlitti, N. A., Reid, R. E. R., & Andersen, R. E. (2019). Predicting On-Ice Skating Using Laboratory- and Field-Based Assessments in College Ice Hockey Players. International Journal of Sports Physiology and Performance, 1184–1189. doi:10.1123/ijspp.2018-0708.
 
9.
Delisle-Houde, P., Reid, R. E. R., Insogna, J. A., Chiarlitti, N. A., & Andersen, R. E. (2019). Seasonal Changes in Physiological Responses and Body Composition During a Competitive Season in Male and Female Elite Collegiate Ice Hockey Players. Journal of Strength and Conditioning Research, 33(8), 2162–2169. doi:10.1519/jsc.0000000000002338.
 
10.
Farlinger, C. M., Kruisselbrink, L. D., & Fowles, J. R. (2007). Relationships to skating performance in competitive hockey players. Journal of Strength and Conditioning Research, 21(3), 915–922. doi:10.1519/r-19155.1.
 
11.
França, C., Gouveia, É., Caldeira, R., Marques, A., Martins, J., Lopes, H., . . . Ihle, A. (2022). Speed and Agility Predictors among Adolescent Male Football Players. International Journal of Enviromentaln Research and Public Health, 19(5), 2856.
 
12.
Frisancho, A. R. (1990). Anthropometric standards for the assessment of growth and nutritional status: University of Michigan Press, Ann Arbor, Michigan, USA.
 
13.
Gabbett, T. J. (2006). Skill-based conditioning games as an alternative to traditional conditioning for rugby league players. Journal of Strength & Conditioning Research, 20(2), 306–315.
 
14.
Gupta, S., Baron, J., Bieniec, A., Swinarew, A., & Stanula, A. (2022). Relationship between vertical jump tests and ice-skating performance in junior Polish ice hockey players. Biology of Sport, 225–232. doi:10.5114/biolsport.2023.112972.
 
15.
Haukali, E., & Lief, I. T. (2016). Relationship between off-season changes in power and in-season changes in skating speed in young ice hockey players. International Journal of Applied Sports Sciences, 28(2), 111– 122.
 
16.
Haukali, E., & Tjelta, L. I. (2015). Correlation between “off-ice” variables and skating performance among young male ice hockey players. International Journal of Applied Sports Sciences, 27(1), 26–32.
 
17.
Heath, B. H., & Carter, J. L. (1967). A modified somatotype method. American Journal of Phyiology and Anthropology, 27(1), 57–74.
 
18.
Henry, G., Dawson, B., Lay, B., & Young, W. (2011). Validity of a reactive agility test for Australian football. International Journal of Sports Physiology and Performance, 6(4), 534–545.
 
19.
Hojka, V., Stastny, P., Rehak, T., Gołas, A., Mostowik, A., Zawart, M., & Musálek, M. (2016). A systematic review of the main factors that determine agility in sport using structural equation modeling. Journal of Human Kinetics, 52(1), 115–123.
 
20.
Horicka, P., & Simonek, J. (2019). Identification of agility predictors in basketbal. Trends in Sport Sciences, 26(1).
 
21.
Horníková, H., & Zemková, E. (2022). Determinants of Y-Shaped Agility Test in Basketball Players. Applied Sciences, 12(4), 1865.
 
22.
Jeffreys, I. (2011). A task-based approach to developing context-specific agility. Strength & Conditioning Journal, 33(4), 52–59.
 
23.
Kokinda, M., Kandrac, R., & Turek, M. (2012). The Construction of the Factor Model for Fitness Assessment in Ice Hockey Players. Balt J Health Phys Activ, 4. https://doi.org/10.2478/v10131....
 
24.
Krause, D. A., Smith, A. M., Holmes, L. C., Klebe, C. R., Lee, J. B., Lundquist, K. M., . . . Hollman, J. H. (2012). Relationship of off-ice and on-ice performance measures in high school male hockey players. Journal of Strength and Conditioning Research, 26(5), 1423–1430. doi:10.1519/JSC.0b013e318251072d.
 
25.
Kutáč, P., Sigmund, M., & Botek, M. (2017). Changes in selected morphological characteristics in elite ice hockey players during an eight-week conditioning program. Journal of Physical Education and Sport, 17(3), 2059–2066. doi:10.7752/jpes.2017.03208.
 
26.
Lohman, T. G., Roche, A. F., & Martorell, R. (1988). Anthropometric standardization reference manual: Human Kinetics books, Chicago, USA.
 
27.
López-Miñarro, P. A., de Baranda Andújar, P. S., & RodrÑGuez-GarcÑa, P. L. (2009). A comparison of the sit-and-reach test and the back-saver sit-and-reach test in university students. Journal of Sports Science & medicine, 8(1), 116–122.
 
28.
Madden, R. F., Erdman, K. A., Shearer, J., Spriet, L. L., Ferber, R., Kolstad, A. T., . . . Benson, L. C. (2019). Effects of Caffeine on Exertion, Skill Performance, and Physicality in Ice Hockey. International Journal of Sports Physiology and Performance, 14(10), 1422–1429. doi:10.1123/ijspp.2019-0130.
 
29.
Makhlouf, I., Tayech, A., Mejri, M. A., Haddad, M., Behm, D. G., Granacher, U., & Chaouachi, A. (2022). Reliability and validity of a modified Illinois change-of-direction test with ball dribbling speed in young soccer players. Biology of Sport, 39(2), 295–306.
 
30.
Maulder, P., & Cronin, J. (2005). Horizontal and vertical jump assessment: reliability, symmetry, discriminative and predictive ability. Physical Therapy in Sport, 6(2), 74–82.
 
31.
Meir, R., Newton, R., Curtis, E., Fardell, M., & Butler, B. (2001). Physical fitness qualities of professional rugby league football players: determination of positional differences. The Journal of Strength & Conditioning Research, 15(4), 450–458.
 
32.
Novák, D., Lipinska, P., Roczniok, R., Spieszny, M., & Stastny, P. (2019). Off-Ice Agility Provide Motor Transfer to On-Ice Skating Performance and Agility in Adolescent Ice Hockey Players. Journal of Sports Science and Medicine, 18(4), 680–694.
 
33.
Novak, D., Tomasek, A., Lipinska, P., & Stastny, P. (2020). The Specificity of Motor Learning Tasks Determines the Kind of Skating Skill Development in Older School-Age Children. Sports (Basel), 8(9). doi:10.3390/sports8090126.
 
34.
Ortega, F. B., Artero, E. G., Ruiz, J. R., Vicente-Rodriguez, G., Bergman, P., Hagströmer, M., ... & Castillo, M. J. (2008). Reliability of health-related physical fitness tests in European adolescents. The HELENA Study. International Journal of Obesity, 32(5), S49–S57.
 
35.
Perez, J., Guilhem, G., Hager, R., & Brocherie, F. (2021). Mechanical determinants of forward skating sprint inferred from off- and on-ice force-velocity evaluations in elite female ice hockey players. European Journal of Sport Science, 21(2), 192–203. doi:10.1080/17461391.2020.1751304.
 
36.
Roczniok, R., Stanula, A., Gabryś, T., Szmatlan-Gabryś, U., Gołaś, A., & Stastny, P. (2016a). Physical fitness and performance of polish ice-hockey players competing at different sports levels. Journal of Human Kinetics, 51, 201–208. doi:10.1515/hukin-2015-0165.
 
37.
Roczniok, R., Stanula, A., Maszczyk, A., Mostowik, A., Kowalczyk, M., Fidos-Czuba, O., & Zając, A. (2016b). Physiological, physical and on-ice performance criteria for selection of elite ice hockey teams. Biology of Sport, 33(1), 43–48. doi:10.5604/20831862.1180175.
 
38.
Secomb, J. L., Dascombe, B. J., & Nimphius, S. (2021). Importance of Joint Angle-Specific Hip Strength for Skating Performance in Semiprofessional Ice Hockey Athletes. Journal of Strength and Conditioning Research, 35(9), 2599–2603. doi:10.1519/jsc.0000000000004087.
 
39.
Serpell, B. G., Ford, M., & Young, W. B. (2010). The development of a new test of agility for rugby league. Journal of Strength & Conditioning Research, 24(12), 3270–3277.
 
40.
Sheppard, J., Young, W. B., Doyle, T., Sheppard, T., & Newton, R. U. (2006). An evaluation of a new test of reactive agility and its relationship to sprint speed and change of direction speed. Journal of Science and Medicine in Sport, 9(4), 342–349.
 
41.
Sheppard, J. M., Dawes, J. J., Jeffreys, I., Spiteri, T., & Nimphius, S. (2014). Broadening the view of agility: A scientific review of the literature. Journal of Australian Strength and Conditioning, 22(3), 6–25.
 
42.
Sheppard, J. M., & Young, W. B. (2006). Agility literature review: Classifications, training and testing. Journal of Sports Sciences, 24(9), 919–932.
 
43.
Schulze, S., Laudner, K. G., Delank, K.-S., Brill, R., & Schwesig, R. (2021). Reference data by player position for an ice hockey-specific complex test. Applied Sciences (Switzerland), 11(1), 1–14. doi:10.3390/app11010280.
 
44.
Schulze, S., Laudner, K. G., Delank, K.-S., Brill, R., & Schwesig, R. (2021). Reference data by player position for an ice hockey-specific complex test. Applied Sciences, 11(1), 280.
 
45.
Schwesig, R., Hermassi, S., Edelmann, S., Thorhauer, U., Schulze, S., Fieseler, G., . . . Chelly, M. S. (2017). Relationship between ice hockey-specific complex test and maximal strength, aerobic capacity and postural regulation in professional players. Journal of Sports Medicine and Physical Fitness, 57(11), 1415–1423. doi:10.23736/s0022-4707.17.07020-7.
 
46.
Schwesig, R., Laudner, K. G., Delank, K. S., Brill, R., & Schulze, S. (2021). Relationship between ice hockeyspecific complex test (IHCT) and match performance. Applied Sciences (Switzerland), 11(7). doi:10.3390/app11073080.
 
47.
Schwesig, R., Lauenroth, A., Schulze, S., Laudner, K. G., Bartels, T., Delank, K. S., . . . Hermassi, S. (2018). Reliability of an ice hockey-specific complex test. Sportverletz Sportschaden, 32(3), 196–203. doi:10.1055/a-0648-8874.
 
48.
Sporis, G., Jukic, I., Milanovic, L., & Vucetic, V. (2010). Reliability and factorial validity of agility tests for soccer players. Journal of Strength & Conditioning Research, 24(3), 679–686.
 
49.
Stewart, P. F., Turner, A. N., & Miller, S. C. (2014). Reliability, factorial validity, and interrelationships of five commonly used change of direction speed tests. Scandinavian Journal of Medicine & Science in Sports, 24(3), 500–506.
 
50.
Šeparović, V., & Nuhanović, A. (2008). Latent structure of standard indicators of situational effectiveness in basketball in Bosnian league 6. Sport Scientific and Practical Aspects, 5(1/2), 13–18.
 
51.
Maly, T., Zahalka, F., Mala, L., & Teplan, J. (2014). Profile, correlation and structure of speed in youth elite soccer players. Journal of Human Kinetics, 40, 149–159.
 
52.
Vigh-Larsen, J. F., Haverinen, M. T., Knudsen, C. B., Daasbjerg, A., Beck, J. H., Overgaard, K., . . . Andersen, T. B. (2021). The relationship between age and fitness profiles in elite male ice hockey players. Journal of Sports Medicine and Physical Fitness, 61(4), 512–518. doi:10.23736/s0022-4707.20.11313-6.
 
53.
Vigh-Larsen, J. F., Haverinen, M. T., Panduro, J., Ermidis, G., Andersen, T. B., Overgaard, K., . . . Mohr, M. (2020). On-Ice and Off-Ice Fitness Profiles of Elite and U20 Male Ice Hockey Players of Two Different National Standards. Journal of Strength and Conditioning Research, 34(12), 3369–3376. doi:10.1519/jsc.0000000000003836.
 
54.
Wagner, H., Abplanalp, M., von Duvillard, S. P., Bell, J. W., Taube, W., & Keller, M. (2021). The relationship between on-ice and off-ice performance in elite male adolescent ice hockey players—an observation study. Applied Sciences (Switzerland), 11(6), 2724. doi:10.3390/app11062724.
 
55.
Williams, M., & Grau, S. (2020). Physical Performance and the Relationship to Game Performance in Elite Adolescent Ice Hockey. International Journal of Strength and Conditioning, 1(1), 1–10.
 
56.
Young, W., James, R., & Montgomery, I. (2002). Is muscle power related to running speed with changed of direction? Journal of Sports Medicine and Physical Fitness, 42(3), 282–288.
 
57.
Živković, M., Stojiljković, N., Trajković, N., Stojanović, N., Đošić, A., Antić, V., & Stanković, N. (2022). Speed, Change of Direction Speed, and Lower Body Power in Young Athletes and Nonathletes According to Maturity Stage. Children, 9(2), 242.
 
eISSN:1899-7562
ISSN:1640-5544
Journals System - logo
Scroll to top