SECTION II - EXERCISE PHYSIOLOGY AND SPORTS MEDICINE / RESEARCH PAPER
Effects of Threshold Pressure Loading Exercises Applied to Inspiratory Muscles in Taekwondo Athletes on the Concentration and Utilization of Lactate
,
 
 
 
More details
Hide details
1
Faculty of Sport Sciences, Erciyes University, Kayseri, Turkey.
 
2
Medical Faculty, Department of Sports Medicine, Erciyes University, Kayseri, Turkey.
 
These authors had equal contribution to this work
 
 
Submission date: 2023-08-28
 
 
Final revision date: 2023-12-16
 
 
Acceptance date: 2024-05-10
 
 
Online publication date: 2024-12-06
 
 
Corresponding author
Murat Koç   

Faculty of Sports Sciences, Erciyes University, Turkey
 
 
 
KEYWORDS
TOPICS
ABSTRACT
This study examined the effects of different inspiratory muscle training (IMT) on lactate concentration and utilization during high-intensity exercises. Participants were divided into the following three groups: a chronic inspiratory training group (CRG), an acute inspiratory training group (ARG), and a control group (CG). Participants in the CRG accomplished IMT at an exercise intensity of 60–90% of the maximum inspiratory pressure (MIP) with 30 breaths twice a day for 8 weeks, and those in the ARG performed IMT at an intensity of 40–50% of the MIP for approximately 20 min in the pre-training warm-up phase three times a week. Body composition tests, maximum oxygen uptake, anaerobic power tests, and lactate concentrations of participants were evaluated before and after the intervention. Three consecutive anaerobic power tests (Wingate) were performed to observe changes in lactate concentration and utilization during high-intensity exercises. Blood lactate concentrations were measured immediately at the end of each anaerobic power test, after a 75-s rest, and during passive rest at the 2nd, 3rd, 4th, 5th, 10th, and 15th min of recovery. The results of the analysis of variance (ANOVA) revealed a significant decrease in blood lactate concentration only in the CRG immediately after the first Wingate test, whereas significant differences in the ARG and the CG were observed after the third Wingate test. After the last Wingate test, a significant decrease was observed after 5 min of recovery in the CRG and after 10 and 15 min of passive rest in both training groups. Herein, we conclude that IMT decreases blood lactate concentration after intense exercise and accelerates lactate utilization during recovery.
REFERENCES (51)
1.
Alnuman, N., & Alshamasneh, A. (2022). The effect of inspiratory muscle training on the pulmonary function in mixed martial arts and kickboxing athletes. Journal of Human Kinetics, 81(1), 53–63. doi: 10.2478/hukin-2022-0005.
 
2.
Amonette, W. E., & Dupler, T. L. (2002). The effects of respiratory muscle training on VO2max, the ventilatory threshold and pulmonary function. Journal of Exercise Physiology, 5(2), 29–35.
 
3.
An, Y. J., Lee, K. S., Kim, T. W., Son, H. J., Yang, J. H., Kim, S. Y., & Jang, C. H. (2017). The effect of 8 weeks inspiratory muscle training and taekwondo exercise on physical fitness, crp, pulmonary function and isokinetic muscular function in middle aged male smokers. Exercise Science, 26(3), 212–222. doi: 10.15857/ksep.2017.26.3.212.
 
4.
Archiza, B., Andaku, D. K., Caruso, F. C. R., Bonjorno, J. C., Oliveira, C. R. d., Ricci, P. A., Amaral, A. C. d., Mattiello, S. M., Libardi, C. A., Phillips, S. A., Arena, R., & Borghi-Silva, A. (2018). Effects of inspiratory muscle training in professional women football players: a randomized sham-controlled trial. Journal of Sports Sciences, 36(7), 771–780. doi: 10.1080/02640414.2017.1340659.
 
5.
Areias, G. D., Santiago, L. R., Teixeira, D. S., & Reis, M. S. (2020). Concurrent Validity of the Static and Dynamic Measures of Inspiratory Muscle Strength: Comparison between Maximal Inspiratory Pressure and S-Index. Brazilian Journal of Cardiovascular Surgery, 35(4), 459–464. doi: 10.21470/1678-9741-2019-0269.
 
6.
Bailey, S. J., Romer, L. M., Kelly, J., Wilkerson, D. P., DiMenna, F. J., & Jones, A. M. (2010). Inspiratory muscle training enhances pulmonary O(2) uptake kinetics and high-intensity exercise tolerance in humans. Journal of Applied Physiology, 109(2), 457–468. doi: 10.1152/japplphysiol.00077.2010.
 
7.
Boraczyński, T., & Urniaż, J. (2008). Changes in Aerobic and Anaerobic Power Indices in Elite Handball Players Following a 4-Week General Fitness Mesocycle. Journal of Human Kinetics, 19, 131–140. doi: 10.2478/v10078-008-0010-1.
 
8.
Brown, P. I., Sharpe, G. R., & Johnson, M. A. (2008). Inspiratory muscle training reduces blood lactate concentration during volitional hyperpnoea. European Journal of Applied Physiology, 104(1), 111–117. doi: 10.1007/s00421-008-0794-7.
 
9.
Brown, P. I., Sharpe, G. R., & Johnson, M. A. (2012). Inspiratory muscle training abolishes the blood lactate increase associated with volitional hyperpnoea superimposed on exercise and accelerates lactate and oxygen uptake kinetics at the onset of exercise. European Journal of Applied Physiology, 112(6), 2117–2129. doi: 10.1007/s00421-011-2185-8.
 
10.
Bürger-Mendonça, M., De Oliveira, J. C., Cardoso, J. R., Bielavsky, M., & Azevedo, P. (2015). Changes in blood lactate concentrations during taekwondo combat simulation. Journal of Exercise Rehabilitation, 11(5), 255–258. doi: 10.12965/jer.150218.
 
11.
Chiappa, G. R., Ribeiro, J. P., Alves, C. N., Vieira, P. J., Dubas, J., Queiroga, F., Jr., Batista, L. D., Silva, A. C., & Neder, J. A. (2009). Inspiratory resistive loading after all-out exercise improves subsequent performance. European Journal of Applied Physiology, 106(2), 297–303. doi: 10.1007/s00421-009-1022-9.
 
12.
Chiappa, G. R., Roseguini, B. T., Alves, C. N., Ferlin, E. L., Neder, J. A., & Ribeiro, J. P. (2008). Blood lactate during recovery from intense exercise: impact of inspiratory loading. Medicine and Science in Sports and Exercise, 40(1), 111–116. doi: 10.1249/mss.0b013e3181591de1.
 
13.
Cirino, C., Gobatto, C. A., Pinto, A. S., Torres, R. S., Hartz, C. S., Azevedo, P. H., Moreno, M. A., & Manchado-Gobatto, F. B. (2021). Complex network model indicates a positive effect of inspiratory muscles pre-activation on performance parameters in a judo match. Scientific Reports, 11(1), 11148. doi: 10.1038/s41598-021-90394-1.
 
14.
Cirino, C., Marostegan, A. B., Hartz, C. S., Moreno, M. A., Gobatto, C. A., & Manchado-Gobatto, F. B. (2023). Effects of Inspiratory Muscle Warm-Up on Physical Exercise: A Systematic Review. Biology (Basel), 12(2), 333. doi: 10.3390/biology12020333.
 
15.
Cohen, J. (2013). Statistical power analysis for the behavioral sciences. Academic press.
 
16.
Çeçen Aksu, A., Turgay, F., & Dalip, M. (2008). Effects of Soccer Training on Aerobic and Anaerobic Thresholds with Emphasis on Lactate Recovery. Turkish Journal of Sports Medicine, 43(4), 141–149.
 
17.
De Sousa, M. M., dos Santos Pimentel, M., de Andrade Sobreira, I., de Jesus Barros, R., Borghi-Silva, A., & Mazzoli-Rocha. (2020). Inspiratory Muscle Training Improves Aerobic Capacity in Amateur Indoor Football Players. International Journal of Sports Medicine, 42(5), 456–463. https://doi.org/10.1055/a-1255....
 
18.
Dotan, R. (2006). The Wingate anaerobic test’s past and future and the compatibility of mechanically versus electro-magnetically braked cycle-ergometers. European Journal of Applied Physiology, 98(1), 113–116. doi: 10.1007/s00421-006-0251-4.
 
19.
Edwards, A. M., Wells, C., & Butterly, R. (2008). Concurrent inspiratory muscle and cardiovascular training differentially improves both perceptions of effort and 5000 m running performance compared with cardiovascular training alone. British Journal of Sports Medicine, 42(10), 823–827. doi: 10.1136/bjsm.2007.045377.
 
20.
Fernández-Lázaro, D., Gallego-Gallego, D., Corchete, L. A., Fernández Zoppino, D., González-Bernal, J. J., García Gómez, B., & Mielgo-Ayuso, J. (2021). Inspiratory Muscle Training Program Using the PowerBreath®: Does It Have Ergogenic Potential for Respiratory and/or Athletic Performance? A Systematic Review with Meta-Analysis. International Journal of Environmental Research and Public Health, 18(13), 6703. doi: 10.3390/ijerph18136703.
 
21.
Folhes, O., Reis, V. M., Marques, D. L., Neiva, H. P., & Marques, M. C. (2023). Influence of the Competitive Level and Weight Class on Technical Performance and Physiological and Psychophysiological Responses during Simulated Mixed Martial Arts Fights: A Preliminary Study. Journal of Human Kinetics, 86, 205–215. doi: 10.5114/jhk/159453.
 
22.
Goosey-Tolfrey, V., Foden, E., Perret, C., & Degens, H. (2010). Effects of inspiratory muscle training on respiratory function and repetitive sprint performance in wheelchair basketball players. British Journal of Sports Medicine, 44(9), 665–668. doi: 10.1136/bjsm.2008.049486.
 
23.
Griffiths, L. A., & McConnell, A. K. (2007). The influence of inspiratory and expiratory muscle training upon rowing performance. European Journal of Applied Physiology, 99(5), 457–466. doi: 10.1007/s00421-006-0367-6.
 
24.
Guy, J. H., Edwards, A. M., & Deakin, G. B. (2014). Inspiratory muscle training improves exercise tolerance in recreational soccer players without concomitant gain in soccer-specific fitness. Journal of Strength Conditioning Research, 28(2), 483–491. doi: 10.1519/JSC.0b013e31829d24b0.
 
25.
Harms, C. A., Babcock, M. A., McClaran, S. R., Pegelow, D. F., Nickele, G. A., Nelson, W. B., & Dempsey, J. A. (1997). Respiratory muscle work compromises leg blood flow during maximal exercise. Journal of Applied Physiology, 82(5), 1573–1583. doi: 10.1152/jappl.1997.82.5.1573.
 
26.
Hartz, C. S., Sindorf, M. A. G., Lopes, C. R., Batista, J., & Moreno, M. A. (2018). Effect of Inspiratory Muscle Training on Performance of Handball Athletes. Journal of Human Kinetics, 63(1), 43–51. doi: 10.2478/hukin-2018-0005.
 
27.
Johnson, M. A., Mills, D. E., Brown, D. M., Bayfield, K. J., Gonzalez, J. T., & Sharpe, G. R. (2012). Inspiratory loading intensity does not influence lactate clearance during recovery. Med Sci Sports Exerc, 44(5), 863–871. doi: 10.1249/MSS.0b013e31824079d0.
 
28.
Johnson, M. A., Sharpe, G. R., & Brown, P. I. (2007). Inspiratory muscle training improves cycling time-trial performance and anaerobic work capacity but not critical power. European Journal of Applied Physiology, 101(6), 761–770. doi: 10.1007/s00421-007-0551-3.
 
29.
Koç, M., & Saritas, N. (2019). The Effect of Respiratory Muscle Training on Aerobic and Anaerobic Strength in Adolescent Taekwondo Athletes. Journal of Education and Training Studies, 7(2), 103–110. doi: 10.11114/jets.v7i2.3764.
 
30.
Kotte, E. M., De Groot, J. F., Bongers, B. C., Winkler, A. M., & Takken, T. (2015). Validity and Reproducibility of a New Treadmill Protocol: The Fitkids Treadmill Test. Medicine and Science in Sports and Exercise, 47(10), 2241–2247. doi: 10.1249/mss.0000000000000657.
 
31.
Lorca-Santiago, J., Jiménez, S. L., Pareja-Galeano, H., & Lorenzo, A. (2020). Inspiratory Muscle Training in Intermittent Sports Modalities: A Systematic Review. International Journal of Environmental Research and Public Health, 17(12), 4448. doi: 10.3390/ijerph17124448.
 
32.
Markovic, G., Vucetic, V., & Cardinale, M. (2008). Heart rate and lactate responses to Taekwondo fight in elite women performers. Biology of Sport, 25(2), 135–146.
 
33.
McConnell, A. K., & Sharpe, G. R. (2005). The effect of inspiratory muscle training upon maximum lactate steady-state and blood lactate concentration. European Journal of Applied Physiology, 94(3), 277–284. doi: 10.1007/s00421-004-1282-3.
 
34.
Mickleborough, T. D., Nichols, T., Lindley, M. R., Chatham, K., & Ionescu, A. A. (2010). Inspiratory flow resistive loading improves respiratory muscle function and endurance capacity in recreational runners. Scandinavian Journal of Medicine & Science in Sports, 20(3), 458–468. doi: 10.1111/j.1600-0838.2009.00951.x.
 
35.
Minahan, C., Sheehan, B., Doutreband, R., Kirkwood, T., Reeves, D., & Cross, T. (2015). Repeated-sprint cycling does not induce respiratory muscle fatigue in active adults: measurements from the Powerbreathe (R) inspiratory muscle trainer. Journal of Sports Science and Medicine, 14(1), 233–238.
 
36.
Najafi, A., Ebrahim, K., Ahmadizad, S., Jahani Ghaeh Ghashlagh, G. R., Javidi, M., & Hackett, D. (2019). Improvements in soccer-specific fitness and exercise tolerance following 8 weeks of inspiratory muscle training in adolescent males. Journal of Sports Medicine and Physical Fitness, 59(12), 1975–1984. doi: 10.23736/S0022-4707.19.09578-1.
 
37.
Ouergui, I., Ardigo, L., Selmi, O., Chtourou, H., Bouassida, A., Franchini, E., & Bouhlel, E. (2021). Psycho-physiological aspects of small combats in taekwondo: impact of area size and within-round sparring partners. Biology of Sport, 38(2), 157–164. doi: 10.5114/biolsport.2020.96946.
 
38.
Riganas, C. S., Vrabas, I. S., Christoulas, K., & Mandroukas, K. (2008). Specific inspiratory muscle training does not improve performance or VO2max levels in well trained rowers. Journal of Sports Medicine and Physical Fitness, 48(3), 285–292. doi: 10.5114/biolsport.2020.96946.
 
39.
Romer, L. M., & Polkey, M. I. (2008). Exercise-induced respiratory muscle fatigue: implications for performance. Journal of Applied Physiology, 104(3), 879–888. doi: 10.1152/japplphysiol.01157.2007.
 
40.
Rożek-Piechura, K., Kurzaj, M., Okrzymowska, P., Kucharski, W., Stodółka, J., & Maćkała, K. (2020). Influence of Inspiratory Muscle Training of Various Intensities on The Physical Performance of Long‐Distance Runners. Journal of Human Kinetics, 75(1), 127–137. doi: 10.2478/hukin-2020-0031.
 
41.
Schaffarczyk, M., Rogers, B., Reer, R., & Gronwald, T. (2022). Validity of the polar H10 sensor for heart rate variability analysis during resting state and incremental exercise in recreational men and women. Sensors, 22(17), 6536. doi: 10.3390/s22176536.
 
42.
Segizbaeva, M. O., Timofeev, N. N., Donina, Z. A., Kur’yanovich, E. N., & Aleksandrova, N. P. (2015). Effects of Inspiratory Muscle Training on Resistance to Fatigue of Respiratory Muscles During Exhaustive Exercise. In M. Pokorski (Ed.), Body Metabolism and Exercise (pp. 35–43). Springer International Publishing. doi: 10.1007/5584_2014_20.
 
43.
Silapabanleng, S., Boonkobkaew, N., Singthongyam, T., Phangjaem, M., Puengtanom, V., Nakpanom, W., & Suwondit, P. (2021). Effect of Inspiratory Muscle Warm-Up on Short-Distance Cycling Performance. Science & Technology Asia, 221–228. doi: 10.14456/scitechasia.2021.60.
 
44.
Silva, P. E., de Carvalho, K. L., Frazao, M., Maldaner, V., Daniel, C. R., & Gomes-Neto, M. (2018). Assessment of Maximum Dynamic Inspiratory Pressure. Respiratory Care, 63(10), 1231–1238. doi: 10.4187/respcare.06058.
 
45.
Slimani, M., Znazen, H., Sellami, M., & Davis, P. (2018). Heart rate monitoring during combat sports matches: a brief review. International Journal of Performance Analysis in Sport, 18(2), 273–292. doi: 10.1080/24748668.2018.1469080.
 
46.
Spengler, C. M., Roos, M., Laube, S. M., & Boutellier, U. (1999). Decreased exercise blood lactate concentrations after respiratory endurance training in humans. European Journal of Applied Physiology and Occupational Physiology, 79(4), 299–305. doi: 10.1007/s004210050511.
 
47.
Tanner, R.K., Fuller, K.L. & Ross, M.L.R. (2010). Evaluation of three portable blood lactate analysers: Lactate Pro, Lactate Scout and Lactate Plus. European Journal of Applied Physiology, 109, 551–559. doi: 10.1007/s00421-010-1379-9.
 
48.
Volianitis, S., McConnell, A. K., Koutedakis, Y., McNaughton, L., Backx, K., & Jones, D. A. (2001). Inspiratory muscle training improves rowing performance. Medicine and Science in Sports and Exercise, 33(5), 803–809. doi: 10.1097/00005768-200105000-00020.
 
49.
Wells, G. D., & Norris, S. R. (2009). Assessment of physiological capacities of elite athletes & respiratory limitations to exercise performance. Paediatric Respiratory Reviews, 10(3), 91–98. doi: 10.1016/j.prrv.2009.04.002.
 
50.
Wilson, R. C., & Jones, P. W. (1991). Long-term reproducibility of Borg scale estimates of breathlessness during exercise. Clinical Science (London, England : 1979), 80(4), 309–312. doi: 10.1042/cs0800309.
 
51.
Yaslı, B. Ç., Karayiğit, R., Karabiyik, H., & Koz, M. (2020). Quantifying Training Load: Scientific Perspective. Turkiye Klinikleri Journal of Sports Sciences, 12(3), 421–433. doi: 10.5336/sportsci.2020-75415.
 
eISSN:1899-7562
ISSN:1640-5544
Journals System - logo
Scroll to top