SECTION II - EXERCISE PHYSIOLOGY AND SPORTS MEDICINE / RESEARCH PAPER
Impact of the TTN C > T Polymorphism on Selected Variables of Aerobic and Anaerobic Capacity after a 12-Week Training Program
 
More details
Hide details
1
Faculty of Physical Education, Gdansk University of Physical Education and Sport, Gdansk, Poland.
 
2
Faculty of Physical Education, Jozef Pilsudski University of Physical Education in Warsaw, Warsaw, Poland.
 
3
Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.
 
4
Institute of Physical Culture Sciences, University of Szczecin, Szczecin, Poland.
 
 
Submission date: 2024-04-24
 
 
Final revision date: 2024-06-28
 
 
Acceptance date: 2024-07-31
 
 
Online publication date: 2024-09-26
 
 
Corresponding author
Agata Leońska-Duniec   

Faculty of Physical Education, Gdansk University of Physical Education and Sport, Poland
 
 
Journal of Human Kinetics 2024;94:117-125
 
KEYWORDS
TOPICS
ABSTRACT
The TTN gene encodes a large muscle protein called titin, which provides structure, stability, and flexibility to skeletal and cardiac sarcomeres. The aim of this study was to determine whether the TTN C > T polymorphism (rs10497520) influenced training-induced changes in selected variables of aerobic and anaerobic capacity. We studied genotypes distribution in a group of 156 Caucasian females examined for aerobic capacity evaluated by maximal oxygen uptake (VO2max), and anaerobic capacity measured with the Wingate anaerobic test, before and after a 12-week training program. The most important finding was a genotype by training interaction for anaerobic capacity (AnC) during the Wingate test (p = 0.003). In response to training, carriers of the CT and TT genotypes demonstrated a significant increase in the total amount of work accomplished. We also showed that the applied training program improved all the Wingate test variables in the CT + TT genotype group by 10%. The obtained results suggest that the CT and TT genotypes may enhance anaerobic power and anaerobic capacity changes induced by regular training. We also suggest that T allele carriers may possess a metabolic adaptive advantage towards the anaerobic metabolism. Thus, the TTN gene may be considered a promising marker used in sports science, underlying variability in achieving sporting goals in events where the anaerobic energy system predominates.
 
REFERENCES (29)
1.
Becker, L., Semmlinger, L. & Rohleder, N. (2021). Resistance training as an acute stressor in healthy young men: Associations with heart rate variability. Alpha-Amylase, and Cortisol Levels. Stress, 24(3), 318–330. doi: 10.1080/10253890.2020.1799193.
 
2.
Castañeda-Babarro, A. (2021). The wingate anaerobic test, a narrative review of the protocol variables that affect the results obtained. Applied Sciences, 11(16), 7417. doi: 10.3390/app11167417.
 
3.
Chauveau, C., Rowell, J. & Ferreiro, A. A. (2014). Rising titan: TTN review and mutation update. Human Mutation, 35(9), 1046–1059. doi: 10.1002/humu.22611.
 
4.
Cholewa J, Gorzkowska A, Kunicki M, Stanula A, Cholewa J. (2016). Continuation of full time employment as an inhibiting factor in Parkinson's disease symptoms. Work, 54(3), 569-575. doi:10.3233/WOR-162305.
 
5.
Costa, A. M., Breitenfeld, L., Silva, A. J., Pereira, A., Izquierdo, M. & Marques, M. C. (2012). Genetic inheritance effects on endurance and muscle strength: an update. Sports Medicine, 42(6), 449–58. doi: 10.2165/11650560-000000000-00000.
 
6.
Freiburg, A., Trombitas, K., Hell, W., Cazorla, O., Fougerousse, F., Centner, T.; Kolmerer, B., Witt, C., Beckmann, J. S., Gregorio, C.C., Granzier, H. & Labeit, S. (2000). Series of exon-skipping events in the elastic spring region of titin as the structural basis for myofibrillar elastic diversity. Circulation Research, 86(11), 1114–1121. doi: 10.1161/01.res.86.11.1114.
 
7.
Freundt, J. K. & Linke W. A. (2019). Titin as a force-generating muscle protein under regulatory control. Journal of Applied Physiology, 126(5), 1474–1482. doi: 10.1152/japplphysiol.00865.2018.
 
8.
Gomes, C., Almeida, J. A., Franco, O. L. & Petriz, B. (2020). Omics and the molecular exercise physiology. Advances in Clinical Chemistry, 96, 55–84. doi: 10.1016/bs.acc.2019.11.003.
 
9.
Ipekoglu, G., Cetin, T., Apaydin, N., Calcali, T., & Senel, E. (2023). The Role of AGT, AMPD1, HIF1α, IL-6 Gene Polymorphisms in the Athletes' Power Status: A Meta-Analysis. Journal of Human Kinetics, 89, 77–87. https://doi.org/10.5114/jhk/16....
 
10.
Krishnan, A., Sharma, D., Bhatt, M., Dixit, A. & Pradeep, P. (2017). Comparison between standing broad jump test and Wingate test for assessing lower limb anaerobic power in elite sportsmen. Medical Journal, Armed Forces India, 73(2), 140–145. doi: 10.1016/j.mjafi.2016.11.003.
 
11.
Labeit, S. & Kolmerer, B. (1995). Titins: Giant proteins in charge of muscle ultrastructure and elasticity. Science, 270, 293–296. doi: 10.1126/science.270.5234.293.
 
12.
Leońska-Duniec, A., Ahmetov, I. I. & Zmijewski, P. (2016). Genetic variants influencing effectiveness of exercise training programmes in obesity - An overview of human studies. Biology of Sport, 33(3), 207–214. doi: 10.5604/20831862.1201052.
 
13.
Leońska-Duniec, A., Borczyk, M., Piechota, M., Korostyński, M., Brodkiewicz, A. & Cięszczyk, P. (2022). TTN variants are associated with physical performance and provide potential markers for sport-related phenotypes. International Journal of Environmental Research and Public Health, 19(16), 10173. doi: 10.3390/ijerph191610173.
 
14.
Leońska-Duniec, A. & Maciejewska-Skrendo, A. (2021). TTN gene’s variants as potential markers associated with muscle tissue’s disfunctions and physical performance. Acta Kinesiologica, 15(S1 2021), 119–126. doi: 10.51371/issn.1840-2976.2021.15.S1.17.
 
15.
Lewinter, M. M. & Granzier, H. L. (2013). Titin is a major human disease gene. Circulation, 127(8), 938–944. doi: 10.1161/circulationaha.112.139717.
 
16.
Linke, W. A. (2018). Titin gene and protein functions in passive and active muscle. Annual Review of Physiology, 80, 389–411. doi: 10.1146/annurev-physiol-021317-121234.
 
17.
Maciejewska-Skrendo, A., Buryta, M., Czarny, W., Król, P., Spieszny, M., Stastny, P., Petr, M., Safranow, K., & Sawczuk, M. (2019). The Polymorphisms of the Peroxisome-Proliferator Activated Receptors’ Alfa Gene Modify the Aerobic Training Induced Changes of Cholesterol and Glucose. Journal of Clinical Medicine, 8(10), 1043. https://doi.org/10.3390/jcm807....
 
18.
Maruyama, K. (1976). Connectin, an elastic protein from myofibrils. Journal of Biochemistry, 80(2), 405–407. doi: 10.1093/oxfordjournals.jbchem.a131291.
 
19.
Miyamoto-Mikami, E., Zempo, H., Fuku, N., Kikuchi, N., Miyachi, M. & Murakami, H. (2018). Heritability estimates of endurance-related phenotypes: A systematic review and meta-analysis. Scandinavian Journal of Medicine & Science in Sports, 28(3), 834–845. doi: 10.1111/sms.12958.
 
20.
Monroy, J. A., Powers, K. L., Gilmore, L. A., Uyeno, T. A., Lindstedt, S. L. & Nishikawa, K. C. (2012). What is the role of titin in active muscle? Exercise and Sport Sciences Reviews, 40(2), 3–78. doi: 10.1097/JES.0b013e31824580c6.
 
21.
Petr, M., Stastny, P., Zajac, A., Tufano, J. J., & Maciejewska-Skrendo, A. (2018). The Role of Peroxisome Proliferator-Activated Receptors and Their Transcriptional Coactivators Gene Variations in Human Trainability: A Systematic Review. International Journal of Molecular Sciences, 19(5), 1472. doi: 10.3390/ijms19051472.
 
22.
Petr, M., Maciejewska-Skrendo, A., Zając, A., Chycki, J., Stastny, P. (2019). Association of elite sports status with gene variants of peroxisome proliferator activated receptors and their transcriptional coactivator. International Journal of Molecular Sciences 21(1), 162. doi: 10.3390/ijms21010162.
 
23.
Rankinen, T., Rice, T., Boudreau, A., Leon, A. S., Skinner, J. S., Wilmore, J. H., Rao, D. C. & Bouchard, C. (2004). Titin is a candidate gene for stroke volume response to endurance training: The heritage family study. Physiological Genomics, 15(1), 27–33. doi: 10.1152/physiolgenomics.00147.2002.
 
24.
Stebbings, G. K., Williams, A. G., Herbert, A. J., Lockey, S. J., Heffernan, S. M., Erskine, R. M., Morse, C. I. & Day, S. H. (2018). TTN genotype is associated with fascicle length and marathon running performance. Scandinavian Journal of Medicine & Science in Sports, 28(2), 400–406. doi: 10.1111/sms.12927.
 
25.
Switala, K. & Leonska-Duniec, A. (2021). Physical activity and gene association with human obesity. Baltic Journal of Health and Physical Activity, 13, 99–111. doi: 10.29359/BJHPA.13.4.10.
 
26.
Timmons, J. A., Knudsen, S., Rankinen, T., Koch, L. G., Sarzynski, M., Jensen, T., Keller, P., Scheele, C., Vollaard, N. B. J.; Nielsen, S., Akerström, T., MacDougald, O. A.; Jansson, E., Greenhaff, P. L., Tarnopolsky, M. A., Van Loon, L. J. C., Pedersen, B. K., Sundberg, C. J., Wahlestedt, C., Britton, S. L. & Bouchard, C. (2010). Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans. Journal of Applied Physiology, 108(6), 1487–1496. doi: 10.1152/japplphysiol.01295.2009.
 
27.
Wang, K., McClure, J. & Tu, A. (1979). Titin: major myofibrillar components of striated muscle. Proceedings of the National Academy of Sciences of the United States of America, 76(8), 3698–3702. doi: 10.1073/pnas.76.8.3698.
 
28.
Williams, C. J., Williams, M. G., Eynon, N., Ashton, K. J., Little, J. P., Wisloff, U. & Coombes, J. S. (2017). Genes to predict VO2max trainability: A systematic review. BMC Genomics, 18(Suppl 8), 831. doi: 10.1186/s12864-017-4192-6.
 
29.
Zupan, M.F., Arata, A.W., Dawson, L.H., Wile, A.L., Payn, T.L. & Hannon, M. E. (2009). WAnT has been established as an effective tool in measuring both muscular power and anaerobic capacity and indicates use of anaerobic energy systems like stored ATP and Creatine phosphate system. Journal of Strength and Conditioning Research, 23(9), 2598–604. doi: 10.1519/JSC.0b013e3181b1b21b.
 
eISSN:1899-7562
ISSN:1640-5544
Journals System - logo
Scroll to top