SECTION II - EXERCISE PHYSIOLOGY AND SPORTS MEDICINE / RESEARCH PAPER
Comparison of Physiological Responses between a W´BAL-INT Training Model and a Critical Power Test
 
More details
Hide details
1
Sport Training Laboratory, Faculty of Sport Sciences, University of Castilla la Mancha, Toledo, Spain.
 
2
Faculty of Health, International University of La Rioja, Logroño, Spain.
 
3
Facultad de Ciencias de la Vida y la Naturaleza, Universidad Nebrija, Madrid, Spain.
 
4
Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla la Mancha, Toledo, Spain.
 
 
Submission date: 2023-11-09
 
 
Final revision date: 2023-12-15
 
 
Acceptance date: 2024-04-09
 
 
Online publication date: 2024-07-17
 
 
Corresponding author
Fernando González-Mohíno   

Sport Training Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, Avenida Carlos III s/n, 45071, Toledo, Spain
 
 
 
KEYWORDS
TOPICS
ABSTRACT
This study aimed to compare acute physiological responses during the W prime (W´) balance training model (W´BAL-INT) with performance in the critical power test (CPTest). Additionally, the study sought to determine the extent of neuromuscular and metabolic fatigue associated with severe and extreme intensity domains. Fourteen road master cyclists (13 male, 1 female) completed graded incremental exercise tests to determine their maximum oxygen uptake and 12-, 7- and 3-min maximal efforts to assess CP and W´ (CPTest). Additionally, they participated in a reconstitutive intermittent training session following the W´BAL-INT model. Physiological responses including oxygen uptake (V̇O2), the heart rate (HR), blood lactate (BLa¯) concentration, and perceptual responses (RPE), were measured and compared to CPTest performance data. The W´BAL-INT induced steady-state physiological responses in V̇O2mean (F = 0.76, p = 0.655) and absolute HR, relative HR and HRCP (F = 0.70, p = 0.704; F = 1.11, p = 0.359; F = 1.70, p = 0.095, respectively) comparable to CPTest. During the 3-min work intervals in the training session, V̇O2 was stable and similar to V̇O2peak (54.2 ± 6.7 to 59.3 ± 4.9 ml·kg−1·min−1) in the CPTest. Furthermore, 4-min rest intervals facilitated recovery up to moderate fatigue levels (80–100% of W´ balance). HR responses were sensitive to interval intensity and accumulated time. Meanwhile, BLa¯ responses and the RPE increased fatigue development during W´BAL-INT. The W´BAL-INT training model generates consistent physiological responses in mean oxygen kinetics, the percentage of CP and the HR, similar to those observed during the CPTest. However, different physiological responses were observed in peak oxygen kinetics and W´ energy balance.
 
REFERENCES (38)
1.
Black, M. I., Bowtell, J. L., McDonagh, S. T. J., Blackwell, J. R., Kelly, J., Bailey, S. J., Thompson, C., Jones, A. M., Wylie, L. J., Mileva, K. N., Sumners, P., & Vanhatalo, A. (2016). Muscle metabolic and neuromuscular determinants of fatigue during cycling in different exercise intensity domains. Journal of Applied Physiology, 122(3), 446–459. https://doi.org/10.1152/japplp....
 
2.
Borg, G. (1998). Borg’s perceived exertion and pain scales. In Borg’s perceived exertion and pain scales. Human Kinetics.
 
3.
Burnley, M., & Jones, A. M. (2007). Oxygen uptake kinetics as a determinant of sports performance. European Journal of Sport Science, 7(2), 63–79. https://doi.org/10.1080/174613....
 
4.
Burnley, M., & Jones, A. M. (2018). Power–duration relationship: Physiology, fatigue, and the limits of human performance. European Journal of Sport Science, 18(1), 1–12. https://doi.org/10.1080/174613....
 
5.
Chamera T, Pronczuk M, Smok P, Drozd M, Michalczyk M, Maszczyk A. (2023). The effects of resistance training on jumping and selected power variables of the lower limbs in female soccer players. Balt J Health Phys Act., 15(3): 1-10. https://doi.org/10.29359/BJHPA....
 
6.
Chidnok, W., Dimenna, F. J., Bailey, S. J., Vanhatalo, A., Morton, R. H., Wilkerson, D. P., & Jones, A. M. (2012). Exercise tolerance in intermittent cycling: Application of the critical power concept. Medicine and Science in Sports and Exercise, 44(5), 966–976. https://doi.org/10.1249/MSS.0B....
 
7.
Collins, J., Leach, O., Dorff, A., Linde, J., Kofoed, J., Sherman, M., Proffit, M., & Gifford, J. R. (2022). Critical power and work-prime account for variability in endurance training adaptations not captured by V̇o2max. Journal of Applied Physiology (Bethesda, Md. : 1985), 133(4), 986–1000. https://doi.org/10.1152/japplp....
 
8.
De Pauw, K., Roelands, B., Cheung, S. S., De Geus, B., Rietjens, G., & Meeusen, R. (2013). Guidelines to Classify Subject Groups in Sport-Science Research. In International Journal of Sports Physiology and Performance (Vol. 8). www.IJSPP-Journal.com.
 
9.
Gaesser, G. A., & Poole, D. C. (1996). The Slow Component of Oxygen Uptake Kinetics in Humans. Exercise and Sport Sciences Reviews, 24(1), 35–70. https://journals.lww.com/acsm-....
 
10.
Galán-Rioja, M. Á., González-Mohíno, F., Poole, D. C., & González-Ravé, J. M. (2020). Relative Proximity of Critical Power and Metabolic/Ventilatory Thresholds: Systematic Review and Meta-Analysis. Sports Medicine, 50(10), 1771–1783. https://doi.org/10.1007/S40279....
 
11.
Galán-Rioja, M. Á., González-Mohíno, F., Skiba, P. F., & González-Ravé, J. M. (2022). Utility of the W´BAL model in training programme design for masters cyclists. European Journal of Sport Science, 23(7), 1259–1268. https://doi.org/10.1080/174613....
 
12.
Hill, D. W., Poole, D. C., & Smith, J. C. (2002). The relationship between power and the time to achieve V̇O2max. Medicine and Science in Sports and Exercise, 34(4), 709–714. https://journals.lww.com/acsm-....
 
13.
Holloszy, J. O., & Coyle, E. F. (1984). Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol Respir Environ Exerc Physiol, 56(4), 831–838. https://doi.org/10.1152/JAPPL.....
 
14.
Howley, E., Bassett DR, J., & Welch, H. (1995). Criteria for maximal oxygen uptake: review and commentary. Medicine & Science in Sports & Exercise, 27(9). https://journals.lww.com/acsm-....
 
15.
Jones, A. M., Burnley, M., Black, M. I., Poole, D. C., & Vanhatalo, A. (2019). The maximal metabolic steady state: redefining the ‘gold standard.’ Physiological Reports, 7(10), e14098. https://doi.org/10.14814/phy2.....
 
16.
Jones, A. M., & Vanhatalo, A. (2017). The ‘Critical Power’ Concept: Applications to Sports Performance with a Focus on Intermittent High-Intensity Exercise. Sports Medicine, 47(1), 65–78. https://doi.org/10.1007/s40279....
 
17.
Karsten, B., Baker, J., Naclerio, F., Klose, A., Bianco, A., & Nimmerichter, A. (2018). Time trials versus time-to-exhaustion tests: Effects on critical power, W0, and oxygen-uptake kinetics. International Journal of Sports Physiology and Performance, 13(2), 183–188. https://doi.org/10.1123/ijspp.....
 
18.
Karsten, B., Jobson, S. A., Hopker, J., Stevens, L., & Beedie, C. (2015). Validity and reliability of critical power field testing. European Journal of Applied Physiology, 115(1), 197–204. https://doi.org/10.1007/s00421....
 
19.
Lucia, A., Hoyos, J., Perez, M., & Chicharro, J. L. (2000). Heart rate and performance parameters in elite cyclists: A longitudinal study. Medicine and Science in Sports and Exercise, 32(10), 1777–1782. https://doi.org/10.1097/000057....
 
20.
McKay, A. K. A., Stellingwerff, T., Smith, E. S., Martin, D. T., Mujika, I., Goosey-Tolfrey, V. L., Sheppard, J., & Burke, L. M. (2022). Defining Training and Performance Caliber: A Participant Classification Framework. International Journal of Sports Physiology and Performance, 17(2), 317–331. https://doi.org/10.1123/ijspp.....
 
21.
Meyler, S., Bottoms, L., Wellsted, D., & Muniz-pumares, D. (2023). Variability in exercise tolerance and physiological responses to exercise prescribed relative to physiological thresholds and to maximum oxygen uptake. Experimental Physiology, 108(4), 581–594. https://doi.org/10.1113/EP0908....
 
22.
Monod, H., & Scherrer, J. (1965). The Work Capacity of a Synergic Muscular Group. Ergonomics, 8(3), 329–338. https://doi.org/10.1080/001401....
 
23.
Morton, R. H., & Billat, L. V. (2004). The critical power model for intermittent exercise. European Journal of Applied Physiology, 91(2), 303–307. https://doi.org/10.1007/s00421....
 
24.
Okuno, N. M., Perandini, L. A. B., Bishop, D., Simões, H. G., Pereira, G., Berthoin, S., Kokubun, E., & Nakamura, F. Y. (2011). Physiological and perceived exertion responses at intermittent critical power and intermittent maximal lactate steady state. Journal of Strength and Conditioning Research, 25(7), 2053–2058. https://doi.org/10.1519/JSC.0B....
 
25.
Pettitt, R. W., Pettitt, C. D., Cabrera, C. A., & Murray, S. R. (2007). A Theoretical Method of Using Heart Rate to Estimate Energy Expenditure during Exercise. International Journal of Sports Science & Coaching, 2(3), 319–327. https://doi.org/10.1260/174795....
 
26.
Pettitt, R. W., Placek, A. M., Clark, I. E., Nicholas A Jamnick, & Murray, S. R. (2015). Sensitivity of Prescribing High-Intensity, Interval Training Using the Critical Power Concept. International Journal of Exercise Science, 8(3), 202–212. http://www.intjexersci.com.
 
27.
Poole, D. C., Burnley, M., Vanhatalo, A., Rossiter, H. B., & Jones, A. M. (2016). Critical power: An important fatigue threshold in exercise physiology. Medicine and Science in Sports and Exercise, 48(11), 2320–2334. https://doi.org/10.1249/MSS.00....
 
28.
Poole, D. C., & Jones, A. M. (2012). Oxygen uptake kinetics. Comprehensive Physiology, 2(2), 933–996. https://doi.org/10.1002/cphy.c....
 
29.
Poole, D. C., & Jones, A. M. (2017). Measurement of the maximum oxygen uptake Vo2max: Vo2peak is no longer acceptable. Journal of Applied Physiology, 122(4), 997–1002. https://doi.org/10.1152/japplp....
 
30.
Poole, D. C., & Jones, A. M. (2023). Critical power: a paradigm-shift for benchmarking exercise testing and prescription. Experimental Physiology, 108(4), 539–540. https://doi.org/10.1113/EP0911....
 
31.
Poole, D. C., Rossiter, H. B., Brooks, G. A., & Gladden, L. B. (2021). The anaerobic threshold: 50+ years of controversy. The Journal of Physiology, 599(3), 737–767. https://doi.org/10.1113/JP2799....
 
32.
Poole, D. C., Ward, S. A., Gardner, G. W., & Whipp, B. J. (1988). Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics, 31(9), 1265–1279. https://doi.org/10.1080/001401....
 
33.
Rosenblat, M. A., Perrotta, A. S., & Thomas, S. G. (2020). Effect of High-Intensity Interval Training Versus Sprint Interval Training on Time-Trial Performance: A Systematic Review and Meta-analysis. Sports Medicine (Auckland, N.Z.), 50(6), 1145–1161. https://doi.org/10.1007/S40279....
 
34.
Sanders, D., & van Erp, T. (2021). The Physical Demands and Power Profile of Professional Men’s Cycling Races: An Updated Review. International Journal of Sports Physiology and Performance, 16(1), 3–12. https://doi.org/10.1123/ijspp.....
 
35.
Skiba, P. F., Chidnok, W., Vanhatalo, A., & Jones, A. M. (2012). Modeling the expenditure and reconstitution of work capacity above critical power. Medicine and Science in Sports and Exercise, 44(8), 1526–1532. https://doi.org/10.1249/MSS.0b....
 
36.
Skiba, P. F., & Clarke, D. C. (2021). The W ′ Balance Model: Mathematical and Methodological Considerations. International Journal of Sports Physiology & Performance, 16(11), 1561–1572. https://journals.humankinetics....
 
37.
Vanhatalo, A., Black, M. I., DiMenna, F. J., Blackwell, J. R., Schmidt, J. F., Thompson, C., Wylie, L. J., Mohr, M., Bangsbo, J., Krustrup, P., & Jones, A. M. (2016). The mechanistic bases of the power–time relationship: muscle metabolic responses and relationships to muscle fibre type. The Journal of Physiology, 594(15), 4407. https://doi.org/10.1113/JP2718....
 
38.
Zoladz, J. A., Grassi, B., Barrett, K., & Powell, F. (2020). A ‘fatigue threshold’ during incremental exercise was identified (and then forgotten) 100 years ago. The Journal of Physiology, 598(13), 2531–2532. https://doi.org/10.1113/JP2796....
 
eISSN:1899-7562
ISSN:1640-5544
Journals System - logo
Scroll to top