The Role of AGT, AMPD1, HIF1α, IL-6 Gene Polymorphisms in the Athletes’ Power Status: A Meta-Analysis
More details
Hide details
Faculty of Sport Science, Ordu University, Ordu, Turkey.
School of Physical Education and Sports, Karabuk University, Karabuk, Turkey.
Faculty of Sport Sciences, Giresun University, Giresun, Turkey.
Submission date: 2023-02-23
Acceptance date: 2023-06-05
Online publication date: 2023-09-05
Corresponding author
Tugba CETIN   

School of Physical Education and Sports, Karabuk University, Karabuk, Turkey
Journal of Human Kinetics 2023;89:77–87
This meta-analysis was designed to investigate the relationship between genetic polymorphisms (AGT rs699, AMPD1 rs17602729, HIF1α rs11549465, IL-6 rs1800795) and power athletes’ status. Only case-control studies were included in the meta-analysis. A systematic search of the PubMed and Web of Science databases was performed to identify relevant studies and 23 studies met the inclusion criteria for the meta-analysis. The data from the included studies were pooled and analyzed using a random effects or fix effects model. The effect size was calculated as the odds ratio or a risk ratio with 95% confidence intervals. The results showed that certain genetic polymorphisms, AGT rs699 Thr allele, HIF1A rs11549465 Ser allele and AMPD1 rs17602729 C allele, were significantly more prevalent in power athletes (p < 0.05). When examining the genotype frequency distribution of AGT rs699 and AMPD1 rs17602729, significant differences were found in both the dominant and recessive models (p < 0.05). The results indicate that these gene polymorphisms play a role in power athlete status, however, new and more comprehensive studies are needed to confirm these results.
Ahmetov, I. I., & Fedotovskaya, O. N. (2012). Sports genomics: Current state of knowledge and future directions. Cellular and Molecular Exercise Physiology, 1(1), 1–24.
Ahmetov, I. I., & Fedotovskaya, O. N. (2015). Current Progress in Sports Genomics. Advances in Clinical Chemistry, 70, 247–314.
Ahmetov, I. I., Hakimullina, A. M., Lyubaeva, E. v., Vinogradova, O. L., & Rogozkin, V. A. (2008). Effect of HIF1A gene polymorphism on human muscle performance. Bulletin of Experimental Biology and Medicine, 146(3), 351–353.
Atanasov, P., Djarova, T., Kalinski, M., Petrov, L., Kaneva, R., Mugandani, S., Watson, G. & Jemni.M. (2015). ACTN3 and AMPD1 Polymorphism and Genotype Combinations in Bulgarian Athletes Performing Wingate Test. Journal of Sports Science, 3(1), 1–10.
Bosnyák, E., Trájer, E., Alszászi, G., Móra, Á., Györe, I., Udvardy, A., Tóth, M., & Szmodis, M. (2020). Lack of association between the GNB3 rs5443, HIF1A rs11549465 polymorphisms, physiological and functional characteristics. Annals of Human Genetics, 84(5), 393–399.
Ciȩszczyk, P., Eider, J., Arczewska, A., Ostanek, M., Leońska-Duniec, A., Sawczyn, S., Ficek, K., Jascaniene, N., Kotarska, K., & Sygit, K. (2011). The HIF1A gene Pro582Ser polymorphism in Polish power-orientated athletes. Biology of Sport, 28(2), 111–114.
Ciȩszczyk, P., Ostanek, M., Leońska-Duniec, A., Sawczuk, M., Maciejewska, A., Eider, J., Ficek, K., Sygit, K., & Kotarska, K. (2012). Distribution of the AMPD1 C34T polymorphism in Polish power-oriented athletes. Journal of Sports Sciences, 30(1), 31–35.
Corvol, P., & Jeunemaitre, X. (1997). Molecular genetics of human hypertension: role of angiotensinogen. Endocrine Reviews, 18(5), 662–677.
Dias, R. G., Pereira, A. D. C., Negrão, C. E., & Krieger, J. E. (2007). Genetic polymorphisms determining of the physical performance in elite athletes. Revista Brasileira de Medicina Do Esporte, 13(3), 209–216.
Drozdovska, S. B., Dosenko, V. E., Ahmetov, I. I., & Ilyin, V. N. (2013). The association of gene polymorphisms with athlete status in Ukrainians. Biology of Sport, 30(3), 163–167.
Eynon, N., Alves, A. J., Meckel, Y., Yamin, C., Ayalon, M., Sagiv, M., & Sagiv, M. (2010). Is the interaction between HIF1A P582S and ACTN3 R577X determinant for power/sprint performance? Metabolism: Clinical and Experimental, 59(6), 861–865.
Eynon, N., Hanson, E. D., Lucia, A., Houweling, P. J., Garton, F., North, K. N., & Bishop, D. J. (2013). Genes for elite power and sprint performance: ACTN3 leads the way. Sports Medicine (Auckland, N.Z.), 43(9), 803–817.
Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.
Febbraio, M. A., & Pedersen, B. K. (2005). Contraction-induced myokine production and release: is skeletal muscle an endocrine organ? Exercise and Sport Sciences Reviews, 33(3), 114–119.
Fedotovskaya, O. N., Danilova, A. A., & Akhmetov, I. I. (2013). Effect of AMPD1 gene polymorphism on muscle activity in humans. Bulletin of Experimental Biology and Medicine, 154(4), 489–491.
Gabbasov, R. T., Arkhipova, A. A., Borisova, A. v., Hakimullina, A. M., Kuznetsova, A. v., Williams, A. G., Day, S. H., & Ahmetov, I. I. (2013). The HIF1A gene PRO582SER polymorphism in Russian strength athletes. Journal of Strength and Conditioning Research, 27(8), 2055–2058.
Ginevičiene, V., Jakaitiene, A., Pranculis, A., Milašius, K., Tubelis, L., & Utkus, A. (2014). AMPD1 rs17602729 is associated with physical performance of sprint and power in elite Lithuanian athletes. BMC Genetics, 15(1), 1–9.
Gomez-Gallego, F., Santiago, C., González-Freire, M., Yvert, T., Muniesa, C. A., Serratosa, L., Altmäe, S., Ruiz, J. R., & Lucia, A. (2009). The C allele of the AGT Met235Thr polymorphism is associated with power sports performance. Applied Physiology, Nutrition, and Metabolism, 34(6), 1108–1111.
Ipekoglu, G., Bulbul, A., & Cakir, H. I. (2022). A meta-analysis on the association of ACE and PPARA gene variants and endurance athletic status. Journal of Sports Medicine and Physical Fitness, 62(6), 795–802.
Maciejewska-Skrendo, A., Mieszkowski, J., Kochanowicz, A., Niespodziński, B., Cieszczyk, P., Leźnicka, K., Leońska-Duniec, A., Kolbowicz, M., Kaczmarczyk, M., Piskorska, E., Stankiewicz, B., Stępniak, R., Mostowik, A., Zawartka, M., Rzeszutko-Bełzowska, A., Massidda, M., Caló, C. M., Kemerytė-Riaubienė,.
E., & Sawczuk, M. (2021). Does the PPARA Intron 7 Gene Variant (rs4253778) Influence Performance in Power/Strength-Oriented Athletes? A Case-Control Replication Study in three Cohorts of European Gymnasts. Journal of Human Kinetics, 79, 77–85.
Maciejewska-Skrendo, A., Ciȩszczyk, P., Chycki, J., Sawczuk, M., & Smółka, W. (2019). Genetic Markers Associated with Power Athlete Status. Journal of Human Kinetics, 68(1), 17–36.
Petersen, A. M., Pedersen, B. K. (2005). The anti-inflammatory effect of exercise. Journal of Applied Physiology, 98(4), 1154–62.
Petr, M., Thiel, D., Kateřina, K., Brož, P., Malý, T., Zahálka, F., Vostatková, P., Wilk, M., Chycki, J., & Stastny, P. (2022). Speed and power-related gene polymorphisms associated with playing position in elite soccer players. Biology of Sport, 39(2), 355–366.
Pickering, C., Suraci, B., Semenova, E. A., Boulygina, E. A., Kostryukova, E. S., Kulemin, N. A., Borisov, O. v., Khabibova, S. A., Larin, A. K., Pavlenko, A. v., Lyubaeva, E. v., Popov, D. v., Lysenko, E. A., Vepkhvadze, T. F., Lednev, E. M., Leonska-Duniec, A., Pajak, B., Chycki, J., Moska, W., … Ahmetov, I. I. (2019). A Genome-Wide Association Study of Sprint Performance in Elite Youth Football Players. Journal of Strength and Conditioning Research, 33(9), 2344–2351.
Pitsiladis, Y., Wang, G., Wolfarth, B., Scott, R., Fuku, N., Mikami, E., He, Z., Fiuza-Luces, C., Eynon, N., & Lucia, A. (2013). Genomics of elite sporting performance: what little we know and necessary advances. British Journal of Sports Medicine, 47(9), 550–555.
Pranckeviciene, E., Gineviciene, V., Jakaitiene, A., Januska, L., & Utkus, A. (2021). Total Genotype Score Modelling of Polygenic Endurance-Power Profiles in Lithuanian Elite Athletes. Genes, 12(7), 1–18.
Rauramaa, R., Kuhanen, R., Lakka, T. A., Väisänen, S. B., Halonen, P., Alén, M., Rankinen, T., & Bouchard, C. (2002). Physical exercise and blood pressure with reference to the angiotensinogen M235T polymorphism. Physiological Genomics, 10(2), 71–77.
Rubio, J. C., Martín, M. A., Rabadán, M., Gómez-Gallego, F., San Juan, A. F., Alonso, J. M., Chicharro, J. L., Pérez, M., Arenas, J., & Lucia, A. (2005). Frequency of the C34T mutation of the AMPD1 gene in worldclass endurance athletes: Does this mutation impair performance? Journal of Applied Physiology, 98(6), 2108–2112.
Ruiz, J. R., Arteta, D., Buxens, A., Artieda, M., Gómez-Gallego, F., Santiago, C., Yvert, T., Moran, M., & Lucia, A. (2010). Can we identify a power-oriented polygenic profile? Journal of Applied Physiology, 108(3), 561–566.
Serrano, A. L., Baeza-Raja, B., Perdiguero, E., Jardí, M., & Muñoz-Cánoves, P. (2008). Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metabolism, 7(1), 33–44.
Tanimoto, K., Yoshiga, K., Eguchi, H., Kaneyasu, M., Ukon, K., Kumazaki, T., Oue, N., Yasui, W., Imai, K., Nakachi, K., Poellinger, L., & Nishiyama, M. (2003). Hypoxia-inducible factor-1alpha polymorphisms associated with enhanced transactivation capacity, implying clinical significance. Carcinogenesis, 24(11), 1779–1783.
Weyerstraß, J., Stewart, K., Wesselius, A., & Zeegers, M. (2018). Nine genetic polymorphisms associated with power athlete status - A Meta-Analysis. Journal of Science and Medicine in Sport, 21(2), 213–220.
Zarebska, A., Sawczyn, S., Kaczmarczyk, M., Ficek, K., Maciejewska-Karowska, A., Sawczuk, M., Leonska-Duniec, A., Eider, J., Grenda, A., & Cieszczyk, P. (2013). Association of rs699 (m235t) polymorphism in the agt gene with power but not endurance athlete status. Journal of Strength and Conditioning Research, 27(10), 2898–2903.