SECTION II - EXERCISE PHYSIOLOGY AND SPORTS MEDICINE / RESEARCH PAPER
The Role of AGT, AMPD1, HIF1α, IL-6 Gene Polymorphisms in the Athletes’ Power Status: A Meta-Analysis
,
 
,
 
 
 
 
More details
Hide details
1
Faculty of Sport Science, Ordu University, Ordu, Turkey.
 
2
School of Physical Education and Sports, Karabuk University, Karabuk, Turkey.
 
3
Faculty of Sport Sciences, Giresun University, Giresun, Turkey.
 
 
Submission date: 2023-02-23
 
 
Acceptance date: 2023-06-05
 
 
Online publication date: 2023-09-05
 
 
Corresponding author
Tugba CETIN   

School of Physical Education and Sports, Karabuk University, Karabuk, Turkey
 
 
Journal of Human Kinetics 2023;89:77–87
 
KEYWORDS
TOPICS
ABSTRACT
This meta-analysis was designed to investigate the relationship between genetic polymorphisms (AGT rs699, AMPD1 rs17602729, HIF1α rs11549465, IL-6 rs1800795) and power athletes’ status. Only case-control studies were included in the meta-analysis. A systematic search of the PubMed and Web of Science databases was performed to identify relevant studies and 23 studies met the inclusion criteria for the meta-analysis. The data from the included studies were pooled and analyzed using a random effects or fix effects model. The effect size was calculated as the odds ratio or a risk ratio with 95% confidence intervals. The results showed that certain genetic polymorphisms, AGT rs699 Thr allele, HIF1A rs11549465 Ser allele and AMPD1 rs17602729 C allele, were significantly more prevalent in power athletes (p < 0.05). When examining the genotype frequency distribution of AGT rs699 and AMPD1 rs17602729, significant differences were found in both the dominant and recessive models (p < 0.05). The results indicate that these gene polymorphisms play a role in power athlete status, however, new and more comprehensive studies are needed to confirm these results.
 
REFERENCES (34)
1.
Ahmetov, I. I., & Fedotovskaya, O. N. (2012). Sports genomics: Current state of knowledge and future directions. Cellular and Molecular Exercise Physiology, 1(1), 1–24. https://doi.org/10.7457/cmep.v....
 
2.
Ahmetov, I. I., & Fedotovskaya, O. N. (2015). Current Progress in Sports Genomics. Advances in Clinical Chemistry, 70, 247–314. https://doi.org/10.1016/BS.ACC....
 
3.
Ahmetov, I. I., Hakimullina, A. M., Lyubaeva, E. v., Vinogradova, O. L., & Rogozkin, V. A. (2008). Effect of HIF1A gene polymorphism on human muscle performance. Bulletin of Experimental Biology and Medicine, 146(3), 351–353. https://doi.org/10.1007/S10517....
 
4.
Atanasov, P., Djarova, T., Kalinski, M., Petrov, L., Kaneva, R., Mugandani, S., Watson, G. & Jemni.M. (2015). ACTN3 and AMPD1 Polymorphism and Genotype Combinations in Bulgarian Athletes Performing Wingate Test. Journal of Sports Science, 3(1), 1–10. https://doi.org/10.17265/2332-....
 
5.
Bosnyák, E., Trájer, E., Alszászi, G., Móra, Á., Györe, I., Udvardy, A., Tóth, M., & Szmodis, M. (2020). Lack of association between the GNB3 rs5443, HIF1A rs11549465 polymorphisms, physiological and functional characteristics. Annals of Human Genetics, 84(5), 393–399. https://doi.org/10.1111/ahg.12....
 
6.
Ciȩszczyk, P., Eider, J., Arczewska, A., Ostanek, M., Leońska-Duniec, A., Sawczyn, S., Ficek, K., Jascaniene, N., Kotarska, K., & Sygit, K. (2011). The HIF1A gene Pro582Ser polymorphism in Polish power-orientated athletes. Biology of Sport, 28(2), 111–114. https://doi.org/10.5604/945117.
 
7.
Ciȩszczyk, P., Ostanek, M., Leońska-Duniec, A., Sawczuk, M., Maciejewska, A., Eider, J., Ficek, K., Sygit, K., & Kotarska, K. (2012). Distribution of the AMPD1 C34T polymorphism in Polish power-oriented athletes. Journal of Sports Sciences, 30(1), 31–35. https://doi.org/10.1080/026404....
 
8.
Corvol, P., & Jeunemaitre, X. (1997). Molecular genetics of human hypertension: role of angiotensinogen. Endocrine Reviews, 18(5), 662–677. https://doi.org/10.1210/edrv.1....
 
9.
Dias, R. G., Pereira, A. D. C., Negrão, C. E., & Krieger, J. E. (2007). Genetic polymorphisms determining of the physical performance in elite athletes. Revista Brasileira de Medicina Do Esporte, 13(3), 209–216. https://doi.org/10.1590/S1517-....
 
10.
Drozdovska, S. B., Dosenko, V. E., Ahmetov, I. I., & Ilyin, V. N. (2013). The association of gene polymorphisms with athlete status in Ukrainians. Biology of Sport, 30(3), 163–167. https://doi.org/10.5604/208318....
 
11.
Eynon, N., Alves, A. J., Meckel, Y., Yamin, C., Ayalon, M., Sagiv, M., & Sagiv, M. (2010). Is the interaction between HIF1A P582S and ACTN3 R577X determinant for power/sprint performance? Metabolism: Clinical and Experimental, 59(6), 861–865. https://doi.org/10.1016/J.META....
 
12.
Eynon, N., Hanson, E. D., Lucia, A., Houweling, P. J., Garton, F., North, K. N., & Bishop, D. J. (2013). Genes for elite power and sprint performance: ACTN3 leads the way. Sports Medicine (Auckland, N.Z.), 43(9), 803–817. https://doi.org/10.1007/S40279....
 
13.
Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. https://doi.org/10.3758/BF0319....
 
14.
Febbraio, M. A., & Pedersen, B. K. (2005). Contraction-induced myokine production and release: is skeletal muscle an endocrine organ? Exercise and Sport Sciences Reviews, 33(3), 114–119. https://doi.org/10.1097/000036....
 
15.
Fedotovskaya, O. N., Danilova, A. A., & Akhmetov, I. I. (2013). Effect of AMPD1 gene polymorphism on muscle activity in humans. Bulletin of Experimental Biology and Medicine, 154(4), 489–491. https://doi.org/10.1007/S10517....
 
16.
Gabbasov, R. T., Arkhipova, A. A., Borisova, A. v., Hakimullina, A. M., Kuznetsova, A. v., Williams, A. G., Day, S. H., & Ahmetov, I. I. (2013). The HIF1A gene PRO582SER polymorphism in Russian strength athletes. Journal of Strength and Conditioning Research, 27(8), 2055–2058. https://doi.org/10.1519/jsc.0b....
 
17.
Ginevičiene, V., Jakaitiene, A., Pranculis, A., Milašius, K., Tubelis, L., & Utkus, A. (2014). AMPD1 rs17602729 is associated with physical performance of sprint and power in elite Lithuanian athletes. BMC Genetics, 15(1), 1–9. https://doi.org/10.1186/1471-2....
 
18.
Gomez-Gallego, F., Santiago, C., González-Freire, M., Yvert, T., Muniesa, C. A., Serratosa, L., Altmäe, S., Ruiz, J. R., & Lucia, A. (2009). The C allele of the AGT Met235Thr polymorphism is associated with power sports performance. Applied Physiology, Nutrition, and Metabolism, 34(6), 1108–1111. https://doi.org/10.1139/H09-10....
 
19.
Ipekoglu, G., Bulbul, A., & Cakir, H. I. (2022). A meta-analysis on the association of ACE and PPARA gene variants and endurance athletic status. Journal of Sports Medicine and Physical Fitness, 62(6), 795–802. https://doi.org/10.23736/S0022....
 
20.
Maciejewska-Skrendo, A., Mieszkowski, J., Kochanowicz, A., Niespodziński, B., Cieszczyk, P., Leźnicka, K., Leońska-Duniec, A., Kolbowicz, M., Kaczmarczyk, M., Piskorska, E., Stankiewicz, B., Stępniak, R., Mostowik, A., Zawartka, M., Rzeszutko-Bełzowska, A., Massidda, M., Caló, C. M., Kemerytė-Riaubienė,.
 
21.
E., & Sawczuk, M. (2021). Does the PPARA Intron 7 Gene Variant (rs4253778) Influence Performance in Power/Strength-Oriented Athletes? A Case-Control Replication Study in three Cohorts of European Gymnasts. Journal of Human Kinetics, 79, 77–85. https://doi.org/10.2478/hukin-....
 
22.
Maciejewska-Skrendo, A., Ciȩszczyk, P., Chycki, J., Sawczuk, M., & Smółka, W. (2019). Genetic Markers Associated with Power Athlete Status. Journal of Human Kinetics, 68(1), 17–36. https://doi.org/10.2478/hukin-....
 
23.
Petersen, A. M., Pedersen, B. K. (2005). The anti-inflammatory effect of exercise. Journal of Applied Physiology, 98(4), 1154–62. https://doi.org/10.1152/japplp....
 
24.
Petr, M., Thiel, D., Kateřina, K., Brož, P., Malý, T., Zahálka, F., Vostatková, P., Wilk, M., Chycki, J., & Stastny, P. (2022). Speed and power-related gene polymorphisms associated with playing position in elite soccer players. Biology of Sport, 39(2), 355–366. https://doi.org/10.5114/biolsp....
 
25.
Pickering, C., Suraci, B., Semenova, E. A., Boulygina, E. A., Kostryukova, E. S., Kulemin, N. A., Borisov, O. v., Khabibova, S. A., Larin, A. K., Pavlenko, A. v., Lyubaeva, E. v., Popov, D. v., Lysenko, E. A., Vepkhvadze, T. F., Lednev, E. M., Leonska-Duniec, A., Pajak, B., Chycki, J., Moska, W., … Ahmetov, I. I. (2019). A Genome-Wide Association Study of Sprint Performance in Elite Youth Football Players. Journal of Strength and Conditioning Research, 33(9), 2344–2351. https://doi.org/10.1519/jsc.00....
 
26.
Pitsiladis, Y., Wang, G., Wolfarth, B., Scott, R., Fuku, N., Mikami, E., He, Z., Fiuza-Luces, C., Eynon, N., & Lucia, A. (2013). Genomics of elite sporting performance: what little we know and necessary advances. British Journal of Sports Medicine, 47(9), 550–555. https://doi.org/10.1136/bjspor....
 
27.
Pranckeviciene, E., Gineviciene, V., Jakaitiene, A., Januska, L., & Utkus, A. (2021). Total Genotype Score Modelling of Polygenic Endurance-Power Profiles in Lithuanian Elite Athletes. Genes, 12(7), 1–18. https://doi.org/10.3390/genes1....
 
28.
Rauramaa, R., Kuhanen, R., Lakka, T. A., Väisänen, S. B., Halonen, P., Alén, M., Rankinen, T., & Bouchard, C. (2002). Physical exercise and blood pressure with reference to the angiotensinogen M235T polymorphism. Physiological Genomics, 10(2), 71–77. https://doi.org/10.1152/physio....
 
29.
Rubio, J. C., Martín, M. A., Rabadán, M., Gómez-Gallego, F., San Juan, A. F., Alonso, J. M., Chicharro, J. L., Pérez, M., Arenas, J., & Lucia, A. (2005). Frequency of the C34T mutation of the AMPD1 gene in worldclass endurance athletes: Does this mutation impair performance? Journal of Applied Physiology, 98(6), 2108–2112. https://doi.org/10.1152/japplp....
 
30.
Ruiz, J. R., Arteta, D., Buxens, A., Artieda, M., Gómez-Gallego, F., Santiago, C., Yvert, T., Moran, M., & Lucia, A. (2010). Can we identify a power-oriented polygenic profile? Journal of Applied Physiology, 108(3), 561–566. https://doi.org/10.1152/japplp....
 
31.
Serrano, A. L., Baeza-Raja, B., Perdiguero, E., Jardí, M., & Muñoz-Cánoves, P. (2008). Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metabolism, 7(1), 33–44. https://doi.org/10.1016/j.cmet....
 
32.
Tanimoto, K., Yoshiga, K., Eguchi, H., Kaneyasu, M., Ukon, K., Kumazaki, T., Oue, N., Yasui, W., Imai, K., Nakachi, K., Poellinger, L., & Nishiyama, M. (2003). Hypoxia-inducible factor-1alpha polymorphisms associated with enhanced transactivation capacity, implying clinical significance. Carcinogenesis, 24(11), 1779–1783. https://doi.org/10.1093/carcin....
 
33.
Weyerstraß, J., Stewart, K., Wesselius, A., & Zeegers, M. (2018). Nine genetic polymorphisms associated with power athlete status - A Meta-Analysis. Journal of Science and Medicine in Sport, 21(2), 213–220. https://doi.org/10.1016/j.jsam....
 
34.
Zarebska, A., Sawczyn, S., Kaczmarczyk, M., Ficek, K., Maciejewska-Karowska, A., Sawczuk, M., Leonska-Duniec, A., Eider, J., Grenda, A., & Cieszczyk, P. (2013). Association of rs699 (m235t) polymorphism in the agt gene with power but not endurance athlete status. Journal of Strength and Conditioning Research, 27(10), 2898–2903. https://doi.org/10.1519/jsc.0b....
 
eISSN:1899-7562
ISSN:1640-5544