SECTION I - KINESIOLOGY / RESEARCH PAPER
Relationship between Lower Limb Muscle Activation Characteristics and Running Economy in Recreational Runners
,
 
,
 
,
 
,
 
Fei Li 1,3
 
 
 
More details
Hide details
1
School of Athletic Performance, Shanghai University of Sport, Shanghai, China.
 
2
Laboratoire Interuniversitaire de Biologie de la Motricité, Université de Lyon, Villeurbanne Cedex, France.
 
3
Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, China.
 
 
Submission date: 2024-11-09
 
 
Final revision date: 2025-01-11
 
 
Acceptance date: 2025-03-28
 
 
Online publication date: 2025-09-23
 
 
Corresponding author
Fei Li   

School of Athletic Performance, Shanghai University of Sport, China
 
 
 
KEYWORDS
TOPICS
ABSTRACT
The aim of this study was to assess the correlation between lower limb muscle activation, co-activation characteristics, and running economy (RE). Twenty-nine male recreational runners participated in two sessions: during the first session, body composition and RE at 10 km·h−1 were measured, while during the second session, we assessed muscle activation using sEMG for rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), biceps femoris (BF), gluteus maximus (GM), tibialis anterior (TA), gastrocnemius lateralis (LG), gastrocnemius medialis (MG), and soleus (SOL) muscles. Additionally, seven pairs of agonist-antagonist co-activation ratios were calculated. Pearson's and statistical non-parameters mapping (SnPM) correlation analyses were used to evaluate the muscular activity and RE, respectively. Pearson’s analysis showed that GM, VM, VL, LG, MG, and SOL activation during the stance phase was negatively correlated with RE (r = −0.499 to −0.592, p < 0.05), whereas RF and VL activation during the initial swing phase was positively correlated with RE (r = 0.522, r = 0.527; p < 0.05). Regarding muscle co-activation, the SOL-TA in the propulsion, the BF-VL, and GM-RF during the initial swing phase were negatively correlated with RE (r = −0.506 to −0.634, p < 0.05). In contrast, the RF-BF in the terminal swing phase was positively correlated with RE (r = 0.578, p < 0.05). Unfortunately, SnPM analysis did not show significant results. In conclusion, greater lower limb muscle activation during the stance phase is associated with better RE. During the swing phase, the co-activation of the high activation of the posterior thigh muscles (GM, BF) and the lower activation of the anterior thigh muscles (quadriceps) is associated with better RE.
REFERENCES (48)
1.
Arellano, C. J., & Kram, R. (2014). Partitioning the metabolic cost of human running: A task-by-task approach. Integrative and Comparative Biology, 54(6), 1084–1098. doi:10.1093/icb/icu033.
 
2.
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289–300. doi:10.1111/j.2517-6161.1995.tb02031.x.
 
3.
Besomi, M., Hodges, P. W., Clancy, E. A., Van Dieën, J., Hug, F., Lowery, M., Merletti, R., Søgaard, K., Wrigley, T., Besier, T., Carson, R. G., Disselhorst-Klug, C., Enoka, R. M., Falla, D., Farina, D., Gandevia, S., Holobar, A., Kiernan, M. C., McGill, K., Perreault, E., Rothwell, J. C., & Tucker, K. (2020). Consensus for experimental design in electromyography (CEDE) project: Amplitude normalization matrix. Journal of Electromyography and Kinesiology, 53, 102438. doi:10.1016/j.jelekin.2020.102438.
 
4.
Bohm, S., Mersmann, F., Santuz, A., & Arampatzis, A. (2019). The force-length-velocity potential of the human soleus muscle is related to the energetic cost of running. Proceedings. Biological Sciences, 286(1917), 20192560. doi:10.1098/rspb.2019.2560.
 
5.
Bohm, S., Mersmann, F., Santuz, A., & Arampatzis, A. (2021). Enthalpy efficiency of the soleus muscle contributes to improvements in running economy. Proceedings. Biological Sciences, 288(1943), 20202784. doi:10.1098/rspb.2020.2784.
 
6.
Brazier, J., Maloney, S., Bishop, C., Read, P. J., & Turner, A. N. (2019). Lower extremity stiffness: considerations for testing, performance enhancement, and injury risk. Journal of Strength and Conditioning Research, 33(4), 1156–1166. doi:10.1519/jsc.0000000000002283.
 
7.
Burden, A. (2010). How should we normalize electromyograms obtained from healthy participants? What we have learned from over 25years of research. Journal of Electromyography and Kinesiology, 20(6), 1023–1035. doi:10.1016/j.jelekin.2010.07.004.
 
8.
Carson, N. M., Aslan, D. H., & Ortega, J. D. (2024). The effect of forward postural lean on running economy, kinematics, and muscle activation. PLoS One, 19(5), e0302249. doi:10.1371/journal.pone.0302249.
 
9.
Chen, S., Segers, V., Zhang, Q., Zhang, Q., Ding, H., & Li, F. (2024). Lower extremity kinematic and kinetic characteristics as effects on running economy of recreational runners. Medicine & Science in Sports & Exercise, 56(8), 1368–1377. doi:10.1249/mss.0000000000003438.
 
10.
Clermont, C. A., Benson, L. C., Osis, S. T., Kobsar, D., & Ferber, R. (2019). Running patterns for male and female competitive and recreational runners based on accelerometer data. Journal of Sports Sciences, 37(2), 204–211. doi:10.1080/02640414.2018.1488518.
 
11.
Del Vecchio, A., Bazzucchi, I., & Felici, F. (2018). Variability of estimates of muscle fiber conduction velocity and surface EMG amplitude across subjects and processing intervals. Journal of Electromyography and Kinesiology, 40, 102–109. doi:10.1016/j.jelekin.2018.04.010.
 
12.
Donath, L., Kurz, E., Roth, R., Zahner, L., & Faude, O. (2015). Different ankle muscle coordination patterns and co-activation during quiet stance between young adults and seniors do not change after a bout of high intensity training. BMC Geriatrics, 15, 19. doi:10.1186/s12877-015-0017-0.
 
13.
Dugan, S. A., & Bhat, K. P. (2005). Biomechanics and analysis of running gait. Physical Medicine and Rehabilitation Clinics of North America, 16(3), 603–621. doi:10.1016/j.pmr.2005.02.007.
 
14.
Eng, C. M., Arnold, A. S., Lieberman, D. E., & Biewener, A. A. (2015). The capacity of the human iliotibial band to store elastic energy during running. Journal of Biomechanics, 48(12), 3341–3348. doi:10.1016/j.jbiomech.2015.06.017.
 
15.
Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. doi:10.3758/brm.41.4.1149.
 
16.
Fletcher, J. R., & MacIntosh, B. R. (2017). Running economy from a muscle energetics perspective. Frontiers in Physiology, 8, 433. doi:10.3389/fphys.2017.00433.
 
17.
Folland, J. P., Allen, S. J., Black, M. I., Handsaker, J. C., & Forrester, S. E. (2017). Running technique is an important component of running economy and performance. Medicine & Science in Sports & Exercise, 49(7), 1412–1423. doi:10.1249/mss.0000000000001245.
 
18.
Foster, C., & Lucia, A. (2007). Running economy: the forgotten factor in elite performance. Sports Medicine, 37(4), 316–319. doi:10.2165/00007256-200737040-00011.
 
19.
Gard, S. A., Miff, S. C., & Kuo, A. D. (2004). Comparison of kinematic and kinetic methods for computing the vertical motion of the body center of mass during walking. Human Movement Science, 22(6), 597–610. doi:10.1016/j.humov.2003.11.002.
 
20.
Heger, H., Wank, V., & Blickhan, R. (2012). A quasi-linear viscoelastic model for the passive properties of the human hip joint. Journal of Mechanics in Medicine and Biology, 12(01), 1250015. doi:10.1142/S0219519412004454.
 
21.
Heise, G., Morgan, D., Hough, H., & Craib, M. (1996). Relationships between running economy and temporal EMG characteristics of bi-articular leg muscles. International Journal of Sports Medicine, 17(2), 128–133. doi:10.1055/s-2007-972820.
 
22.
Heise, G., Shinohara, M., & Binks, L. (2008). Biarticular leg muscles and links to running economy. International Journal of Sports Medicine, 29(8), 688–691. doi:10.1055/s-2007-989372.
 
23.
Hermens, H. J., Freriks, B., Disselhorst-Klug, C., & Rau, G. (2000). Development of recommendations for SEMG sensors and sensor placement procedures. Journal of Electromyography and Kinesiology, 10(5), 361–374. doi:10.1016/s1050-6411(00)00027-4.
 
24.
Hopkins, W. G., Marshall, S. W., Batterham, A. M., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine & Science in Sports & Exercise, 41(1), 3–13. doi:10.1249/MSS.0b013e31818cb278.
 
25.
Jones, A. M., & Carter, H. (2000). The effect of endurance training on parameters of aerobic fitness. Sports Medicine, 29(6), 373–386. doi:10.2165/00007256-200029060-00001.
 
26.
Kyröläinen, H., Belli, A., & Komi, P. V. (2001). Biomechanical factors affecting running economy. Medicine & Science in Sports & Exercise, 33(8), 1330–1337. doi:10.1097/00005768-200108000-00014.
 
27.
Latash, M. L. (2018). Muscle coactivation: definitions, mechanisms, and functions. Journal of Neurophysiology, 120(1), 88–104. doi:10.1152/jn.00084.2018.
 
28.
Lemineur, C., Blain, G. M., Piche, E., & Gerus, P. (2024). Relationship between metabolic cost, muscle moments and co-contraction during walking and running. Gait & Posture, 113, 345–351. doi:10.1016/j.gaitpost.2024.07.008.
 
29.
Lieberman, D. E., Raichlen, D. A., Pontzer, H., Bramble, D. M., & Cutright-Smith, E. (2006). The human gluteus maximus and its role in running. Journal of Experimental Biology, 209(11), 2143–2155. doi:10.1242/jeb.02255.
 
30.
Lieberman, D. E., Venkadesan, M., Werbel, W. A., Daoud, A. I., D'Andrea, S., Davis, I. S., Mang'eni, R. O., & Pitsiladis, Y. (2010). Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature, 463(7280), 531–535. doi:10.1038/nature08723.
 
31.
Monte, A., Baltzopoulos, V., Maganaris, C. N., & Zamparo, P. (2020). Gastrocnemius Medialis and Vastus Lateralis in vivo muscle-tendon behavior during running at increasing speeds. Scandinavian Journal of Medicine & Science in Sports, 30(7), 1163–1176. doi:10.1111/sms.13662.
 
32.
Monte, A., Tecchio, P., Nardello, F., Bachero-Mena, B., Ardigò, L. P., & Zamparo, P. (2023). The interplay between gastrocnemius medialis force-length and force-velocity potentials, cumulative EMG activity and energy cost at speeds above and below the walk to run transition speed. Experimental Physiology, 108(1), 90–102. doi:10.1113/ep090657.
 
33.
Moore, I. S., Jones, A. M., & Dixon, S. J. (2014). Relationship between metabolic cost and muscular coactivation across running speeds. Journal of Science and Medicine in Sport, 17(6), 671–676. doi:10.1016/j.jsams.2013.09.014.
 
34.
Morin, J. B., Gimenez, P., Edouard, P., Arnal, P., Jiménez-Reyes, P., Samozino, P., Brughelli, M., & Mendiguchia, J. (2015). Sprint acceleration mechanics: The major role of hamstrings in horizontal force production. Frontiers in Physiology, 6, 404. doi:10.3389/fphys.2015.00404.
 
35.
Pataky, T. C. (2010). Generalized n-dimensional biomechanical field analysis using statistical parametric mapping. Journal of Biomechanics, 43(10), 1976–1982. doi:10.1016/j.jbiomech.2010.03.008.
 
36.
Pataky, T. C. (2012). One-dimensional statistical parametric mapping in Python. Computer Methods in Biomechanics and Biomedical Engineering, 15(3), 295–301. doi:10.1080/10255842.2010.527837.
 
37.
Robinson, M. A., Vanrenterghem, J., & Pataky, T. C. (2015). Statistical Parametric Mapping (SPM) for alpha-based statistical analyses of multi-muscle EMG time-series. Journal of Electromyography and Kinesiology, 25(1), 14–19. doi:10.1016/j.jelekin.2014.10.018.
 
38.
Santos-Concejero, J., Tam, N., Granados, C., Irazusta, J., Bidaurrazaga-Letona, I., Zabala-Lili, J., & Gil, S. M. (2014). Stride angle as a novel indicator of running economy in well-trained runners. Journal of Strength and Conditioning Research, 28(7), 1889–1895. doi:10.1519/jsc.0000000000000325.
 
39.
Sundby, O. H., & Gorelick, M. L. (2014). Relationship between functional hamstring: quadriceps ratios and running economy in highly trained and recreational female runners. Journal of Strength and Conditioning Research, 28(8), 2214–2227. doi:10.1519/jsc.0000000000000376.
 
40.
Tam, N., Tucker, R., Santos-Concejero, J., Prins, D., & Lamberts, R. P. (2019). Running economy: Neuromuscular and joint-Stiffness contributions in trained runners. International Journal of Sports Physiology and Performance, 14(1), 16–22. doi:10.1123/ijspp.2018-0151.
 
41.
Tam, N., Santos-Concejero, J., Coetzee, D. R., Noakes, T. D., & Tucker, R. (2017). Muscle co-activation and its influence on running performance and risk of injury in elite Kenyan runners. Journal of Sports Sciences, 35(2), 175–181. doi:10.1080/02640414.2016.1159717.
 
42.
Trowell, D., Fox, A., Saunders, N., Vicenzino, B., & Bonacci, J. (2022). Effect of concurrent strength and endurance training on run performance and biomechanics: A randomized controlled trial. Scandinavian Journal of Medicine & Science in Sports, 32(3), 543–558. doi:10.1111/sms.14092.
 
43.
Van der Meulen, L., Bonnaerens, S., Van Caekenberghe, I., De Clerq, D., Segers, V., & Fiers, P. (2024). Habitual Running Style Matters: Duty Factor, and Not Stride Frequency, Relates to Loading Magnitude. Journal of Human Kinetics, 94, 37–45. doi: 10.5114/jhk/191528.
 
44.
Xia, R., Zhang, X., Wang, X., Sun, X., & Fu, W. (2017). Effects of two fatigue protocols on impact forces and lower extremity kinematics during drop landings: Implications for noncontact anterior cruciate ligament injury. Journal of Healthcare Engineering, 2017, 5690519. doi:10.1155/2017/5690519.
 
45.
Yokozawa, T., Fujii, N., & Ae, M. (2007). Muscle activities of the lower limb during level and uphill running. Journal of Biomechanics, 40(15), 3467–3475. doi:10.1016/j.jbiomech.2007.05.028.
 
46.
Zhang, X., Ren, W., Wang, X., Yao, J., & Pu, F. (2024). Quantifying Quadriceps Forces during Running Performed with and without Infrapatellar Straps. Journal of Human Kinetics, 95, 29–42. doi: 10.5114/jhk/190143.
 
47.
Zhou, W., Lai, Z., Mo, S., & Wang, L. (2021). Effects of overground surfaces on running kinematics and kinetics in habitual non-rearfoot strikers. Journal of Sports Sciences, 39(16), 1822–1829. doi:10.1080/02640414.2021.1898194.
 
48.
Zverev, Y. P. (2006). Spatial parameters of walking gait and footedness. Annals of Human Biology, 33(2), 161–176. doi: 10.1080/03014460500500222.
 
eISSN:1899-7562
ISSN:1640-5544
Journals System - logo
Scroll to top