SECTION I - KINESIOLOGY / RESEARCH PAPER
Biomechanical Strategies for Minimizing Force Plate Targeting Effects during Running: Efficacy of Masked Force Plate Integration with Augmented Visual Feedback
,
 
Dong Sun 1,2
,
 
,
 
,
 
,
 
,
 
Yang Song 2,3
,
 
,
 
 
 
 
More details
Hide details
1
Faculty of Sports Science, Ningbo University, Ningbo, China.
 
2
Ningbo No. 2 Hospital, Zhejiang Engineering Research Center for New Technologies and Applications of Helium-Free Magnetic Resonance Imaging, Ningbo, China.
 
3
Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
 
4
KTH MoveAbility Lab, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden.
 
5
Centre for Mental Health Research in Association with the University of Cambridge, Cambridge, United Kingdom.
 
6
Research Institute of Sport Science, Hungarian University of Sports Science, Budapest, Hungary.
 
 
Submission date: 2025-04-21
 
 
Final revision date: 2025-05-25
 
 
Acceptance date: 2025-10-13
 
 
Online publication date: 2025-11-20
 
 
Corresponding author
Yaodong Gu   

Faculty of Sports Science, Ningbo University, No.818 Fenghua Road, Ningbo, 315211, China
 
 
 
KEYWORDS
TOPICS
ABSTRACT
This study aimed to investigate the targeting effect on the gait induced by the visual presence of a force plate during running and to develop a step guidance strategy (SGS) to minimize this effect and improve data acquisition success. Thirty-two healthy male participants were tested under three conditions: when the force plate was masked (MASK), when it was masked with the SGS implemented, and when it was visible (UNMASK). Kinematic, kinetic, and surface electromyography (sEMG) data were collected. The success rates for data acquisition were 30% for the MASK, 65.75% for the UNMASK, and 84.21% for the SGS condition. The UNMASK condition resulted in increased stride time, decreased stance time, and a lower coefficient of variation (CV) for the heel-to-force-plate distance. This condition also showed temporal variations in joint angles, an increased CV of the ankle joint angle waveform, significant alterations in ground reaction forces (GRF)—including greater peak braking force and impulses—and increased activation of the Vastus Medialis. The findings conclude that the visual presence of a force plate induces a targeting effect that undermines result reliability, and the proposed SGS effectively reduces this effect while significantly improving the success rate of data acquisition.
REFERENCES (47)
1.
Abendroth-Smith, J. (1996). Stride adjustments during a running approach toward a force plate. Research Quarterly for Exercise and Sport, 67(1), 97–101. doi:10.1080/02701367.1996.10607930.
 
2.
Bracht-Schweizer, K., Freslier, M., Krapf, S., & Romkes, J. (2017). Visual targeting one step before force plates has no effect on gait parameters in orthopaedic patients during level walking. Gait & Posture, 58, 13–18. doi:10.1016/j.gaitpost.2017.07.031.
 
3.
Braun, L., Mai, P., Hipper, M., Denis, Y., Helwig, J., Anedda, B., Utku, B., Gehring, D., & Willwacher, S. (2024). Managing lower extremity loading in distance running by altering sagittal plane trunk leaning. Journal of Sport and Health Science, 14, 100985. doi:10.1016/j.jshs.2024.100985.
 
4.
Cen, X., Yu, P., Song, Y., Sun, D., Liang, M., Bíró, I., & Gu, Y. (2024). Influence of medial longitudinal arch flexibility on lower limb joint coupling coordination and gait impulse. Gait & Posture, 114, 208–214. doi:10.1016/j.gaitpost.2024.10.002.
 
5.
Cen, X., Yu, P., Song, Y., Sárosi, J., Mao, Z., Bíró, I., & Gu, Y. (2022). The effect of arch stiffness on the foot-ankle temporal kinematics during gait termination: a statistical nonparametric mapping study. Bioengineering, 9(11), 703. doi:10.3390/bioengineering9110703.
 
6.
Challis, J. H. (2001). The variability in running gait caused by force plate targeting. Journal of Applied Biomechanics, 17(1), 77–83. doi:10.1123/jab.17.1.77.
 
7.
Chang, H., and Cen, X. (2024). Can running technique modification benefit patellofemoral pain improvement in runners? A systematic review and meta-analysis. International Journal of Biomedical Engineering and Technology, 45(2), 83–101. doi:10.1504/IJBET.2024.138706.
 
8.
Chardon, M., Barbieri, F. A., Penedo, T., Santos, P. C. R., & Vuillerme, N. (2022). The effects of experimentally-induced fatigue on gait parameters during obstacle crossing: A systematic review. Neuroscience & Biobehavioral Reviews, 142, 104854. doi:10.1016/j.neubiorev.2022.104854.
 
9.
Chen, D., Xu, D., Zhou, H., Cen, X., Song, Y., & Sun, D. (2025). Comparative biomechanical analysis of lumbar spine in trainees with varied barbell positions: a finite element study. International Journal of Biomedical Engineering and Technology, 47(2), 87–106. doi: 10.1504/IJBET.2025.144810.
 
10.
Delp, S. L., Anderson, F. C., Arnold, A. S., Loan, P., Habib, A., John, C. T., Guendelman, E., & Thelen, D. G. (2007). OpenSim: Open-source software to create and analyze dynamic simulations of movement. IEEE Transactions on Biomedical Engineering, 54(11), 1940–1950. doi:10.1109/TBME.2007.901024.
 
11.
Fan, P., Yang, Z., Wang, T., Li, J., Kim, Y., & Kim, S. (2024). Neuromuscular control strategies in basketball shooting: Distance-dependent analysis of muscle synergies. Journal of Sports Science & Medicine, 23(3), 571. doi:10.52082/jssm.2024.571.
 
12.
Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. doi:10.3758/bf03193146.
 
13.
Fritz, S., & Lusardi, M. (2009). White paper: ‘walking speed: the sixth vital sign’. Journal of Geriatric Physical Therapy (2001), 32(2), 46–49.
 
14.
Gao, S., Song, Y., Sun, D., Cen, X., Wang, M., Lu, Z., & Gu, Y. (2025). Impact of Becker muscular dystrophy on gait patterns: Insights from biomechanical analysis. Gait & Posture, 121, 160–165. doi:10.1016/j.gaitpost.2025.05.008.
 
15.
Gao, Z., Zhu, Y., Fang, Y., Fekete, G., Kovács, A., Baker, J. S., Liang, M., & Gu, Y. (2023). Automated recognition of asymmetric gait and fatigue gait using ground reaction force data. Frontiers in Physiology, 14, 1159668. doi:10.3389/fphys.2023.1159668.
 
16.
Grabiner, M. D., Feuerbach, J. W., Lundin, T. M., & Davis, B. L. (1995). Visual guidance to force plates does not influence ground reaction force variability. Journal of Biomechanics, 28(9), 1115–1117. doi:10.1016/0021-9290(94)00175-4.
 
17.
Green, D. J., Thomas, K., Ross, E. Z., Green, S. C., Pringle, J. S. M., & Howatson, G. (2018). Torque, power and muscle activation of eccentric and concentric isokinetic cycling. Journal of Electromyography and Kinesiology, 40, 56–63. doi:10.1016/j.jelekin.2018.03.005.
 
18.
Grob, K., Manestar, M., Filgueira, L., Kuster, M. S., Gilbey, H., & Ackland, T. (2018). The interaction between the vastus medialis and vastus intermedius and its influence on the extensor apparatus of the knee joint. Knee Surgery, Sports Traumatology, Arthroscopy, 26(3), 727–738. doi:10.1007/s00167-016-4396-3.
 
19.
Hirokawa, S. (1989). Normal gait characteristics under temporal and distance constraints. Journal of Biomedical Engineering, 11(6), 449–456. doi:10.1016/0141-5425(89)90038-1.
 
20.
Imai, S., Harato, K., Morishige, Y., Nagura, T., Matsumoto, H., & Hase, K. (2024). Effects of visual occlusion on lower extremity biomechanics during a low-intensity single-leg landing. Journal of Human Kinetics, 97, 51–63. doi:10.5114/jhk/190681.
 
21.
Janicijevic, D., Gu, Y., Sarabon, N., Smajla, D., Kozinc, Z., & García-Ramos, A. (2023). Influence of unilateral and bilateral knee extension fatigue protocols on inter-limb asymmetries assessed through countermovement jumps. Journal of Sports Sciences, 41(7), 686–694. doi:10.1080/02640414.2023.2235157.
 
22.
Kim, S., and Yu, J. (2015). Changes of gait parameters and lower limb dynamics in recreational runners with Achilles tendinopathy. Journal of Sports Science & Medicine, 14(2), 284–289.
 
23.
Liu, Y., and Fernandez, J. (2024). Randomized controlled trial of gastrocnemius muscle analysis using surface electromyography and ultrasound in different striking patterns of young women’s barefoot running. Physical Activity and Health, 8(1), 223–233. doi:10.5334/paah.382.
 
24.
Li, X., Lu, Z., Song, Y., Liang, M., Yuan, Y., Fekete, G., Kovács, A., Sun, D., & Gu, Y. (2024). Pregnancy-induced gait alterations: meta-regression evidence of spatiotemporal adjustments. Frontiers in Bioengineering and Biotechnology, 12, 1506002. doi:10.3389/fbioe.2024.1506002.
 
25.
Middleton, A., Fritz, S. L., & Lusardi, M. (2015). Walking speed: the functional vital sign. Journal of Aging and Physical Activity, 23(2), 314–322. doi:10.1123/japa.2013-0236.
 
26.
Miqueleiz, U., Aguado-Jimenez, R., Lecumberri, P., Garcia-Tabar, I., & Gorostiaga, E. M. (2025). Reliability of inertial measurement unit-based spatiotemporal and kinetic variables in endurance runners during treadmill running. Journal of Human Kinetics, 97, 65–76. doi:10.5114/jhk/195895.
 
27.
O’Dwyer, N., Smith, R., Halaki, M., & Rattanaprasert, U. (2009). Independent assessment of pattern and offset variability of time series waveforms. Gait & Posture, 29(2), 285–289. doi:10.1016/j.gaitpost.2008.09.005.
 
28.
Oggero, E., Pagnacco, G., Morr, D. R., Simon, S. R., & Berme, N. (1997). Probability of valid gait data acquisition using currently available force plates. Biomedical Sciences Instrumentation, 34, 392–397.
 
29.
Pataky, T. C. (2010). Generalized n-dimensional biomechanical field analysis using statistical parametric mapping. Journal of Biomechanics, 43(10), 1976–1982. doi:10.1016/j.jbiomech.2010.03.008.
 
30.
Phinyomark, A., Osis, S., Hettinga, B. A., Leigh, R., & Ferber, R. (2015). Gender differences in gait kinematics in runners with iliotibial band syndrome. Scandinavian Journal of Medicine & Science in Sports, 25(6), 744–753. doi:10.1111/sms.12394.
 
31.
Rastegarpanah, A., Scone, T., Saadat, M., Rastegarpanah, M., Taylor, S. J., & Sadeghein, N. (2018). Targeting effect on gait parameters in healthy individuals and post-stroke hemiparetic individuals. Journal of Rehabilitation and Assistive Technologies Engineering, 5, 2055668318766710. doi:10.1177/2055668318766710.
 
32.
Sanderson, D. J., Franks, I. M., & Elliott, D. (1993). The effects of targeting on the ground reaction forces during level walking. Human Movement Science, 12(3), 327–337. doi:10.1016/0167-9457(93)90022-H.
 
33.
Santos, P. C. R. dos, Barbieri, F. A., Zijdewind, I., Gobbi, L. T. B., Lamoth, C., & Hortobágyi, T. (2019). Effects of experimentally induced fatigue on healthy older adults’ gait: A systematic review. PLoS One, 14(12), e0226939. doi:10.1371/journal.pone.0226939.
 
34.
Santuz, A. (2022). musclesyneRgies: Factorization of electromyographic data in R with sensible defaults. Journal of Open Source Software, 7(74), 4439. doi:10.21105/joss.04439.
 
35.
Song, Y., Cen, X., Chen, H., Sun, D., Munivrana, G., Bálint, K., Bíró, I., & Gu, Y. (2023). The influence of running shoe with different carbon-fiber plate designs on internal foot mechanics: A pilot computational analysis. Journal of Biomechanics, 153, 111597. doi:10.1016/j.jbiomech.2023.111597.
 
36.
Song, Y., Cen, X., Sun, D., Bálint, K., Wang, Y., Chen, H., Gao, S., Bíró, I., Zhang, M., & Gu, Y. (2024). Curved carbon-plated shoe may further reduce forefoot loads compared to flat plate during running. Scientific Reports, 14(1), 13215. doi:10.1038/s41598-024-64177-3.
 
37.
Song, Y., Cen, X., Wang, M., Bálint, K., Tan, Q., Sun, D., Gao, S., Li, F., Gu, Y., Wang, Y., & Zhang, M. (2025). The influence of simulated worn shoe and foot inversion on heel internal biomechanics during running impact: A subject-specific finite element analysis. Journal of Biomechanics, 180, 112517. doi:10.1016/j.jbiomech.2025.112517.
 
38.
Song, Y., Cen, X., Wang, M., Gao, Z., Tan, Q., Sun, D., Gu, Y., Wang, Y., & Zhang, M. (2025). A systematic review of finite element analysis in running footwear biomechanics: insights for running-related musculoskeletal injuries. Journal of Sports Science & Medicine, 24(2), 370. doi:10.52082/jssm.2025.370.
 
39.
Van der Meulen, L., Bonnaerens, S., Van Caekenberghe, I., De Clerq, D., Segers, V., & Fiers, P. (2024). Habitual running style matters: Duty factor, and not stride frequency, relates to loading magnitude. Journal of Human Kinetics, 94, 37–45. doi:10.5114/jhk/191528.
 
40.
Verniba, D., Vergara, M. E., & Gage, W. H. (2015). Force plate targeting has no effect on spatiotemporal gait measures and their variability in young and healthy population. Gait & Posture, 41(2), 551–556. doi:10.1016/j.gaitpost.2014.12.015.
 
41.
Wang, D., Sun, D., Zhou, Z., Li, F., Cen, X., Song, Y., Jemni, M., & Gu, Y. (2024). Comparison of stop-jump muscle synergies in amateur basketball players with and without asymptomatic patellar tendon abnormalities during simulated games. Acta of Bioengineering and Biomechanics, 26(3), 97–109. doi:10.37190/abb-02504-2024-02.
 
42.
Wearing, S. C., Smeathers, J. E., & Urry, S. R. (2003). Frequency-domain analysis detects previously unidentified changes in ground reaction force with visually guided foot placement. Journal of Applied Biomechanics, 19(1), 71–78. doi:10.1123/jab.19.1.71.
 
43.
Wearing, S. C., Urry, S. R., & Smeathers, J. E. (2000). The effect of visual targeting on ground reaction force and temporospatial parameters of gait. Clinical Biomechanics, 15(8), 583–591. doi:10.1016/S0268-0033(00)00025-5.
 
44.
Xu, Y., Zhu, C., Fang, Y., Lu, Z., Song, Y., Hu, C., Sun, D., & Gu, Y. (2025). The effects of different carbon-fiber plate shapes in shoes on lower limb biomechanics following running-induced fatigue. Frontiers in Bioengineering and Biotechnology, 13, 1539976. doi:10.3389/fbioe.2025.1539976.
 
45.
Yamane, T., Kimura, M. & Morita, M. (2025). Impact of Sensor-Axis Combinations on Machine Learning Accuracy for Human Activity Recognition Using Accelerometer Data in Clinical Settings. Physical Activity and Health, 9, 95–109. doi:10.5334/paah.441.
 
46.
Zeni, J. A., Richards, J. G., & Higginson, J. S. (2008). Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait & Posture, 27(4), 710–714. doi:10.1016/j.gaitpost.2007.07.007.
 
47.
Zhu, C., Song, Y., Xu, Y., Zhu, A., Baker, J. S., Liu, W., & Gu, Y. (2024). Toe box shape of running shoes affects in-shoe foot displacement and deformation: A randomized crossover study. Bioengineering, 11(5), 457. doi:10.3390/bioengineering11050457.
 
eISSN:1899-7562
ISSN:1640-5544
Journals System - logo
Scroll to top