SECTION I - KINESIOLOGY / RESEARCH PAPER
Effects of Visual Occlusion on Lower Extremity Biomechanics during a Low-Intensity Single-Leg Landing
 
More details
Hide details
1
Department of Rehabilitation, Keio University Hospital, Tokyo, Japan.
 
2
Department of Physical Medicine and Rehabilitation, Kansai Medical University, Osaka, Japan.
 
3
Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan.
 
4
Japan Sports Medicine Foundation, Tokyo, Japan.
 
 
Submission date: 2023-07-13
 
 
Final revision date: 2023-12-10
 
 
Acceptance date: 2024-07-01
 
 
Online publication date: 2024-12-19
 
 
Corresponding author
Satoshi Imai   

Department of Rehabilitation, Keio University Hospital, 35 Shinanomachi, 160-8582, Tokyo, Japan
 
 
 
KEYWORDS
TOPICS
ABSTRACT
Visual information is crucial for motor control during a jump-landing, allowing for anticipation of landing timing and prediction of the impact. However, the effects of visual occlusion on lower extremity biomechanics are not well understood. To investigate this, we studied the impact of visual occlusion on motor control during a low-intensity single-leg landing. Seventeen female college students participated in the controlled laboratory investigation. They performed low-intensity repetitive vertical hopping on a single leg under eyes-open (EO) and eyes-closed (EC) conditions. Main outcome measurements were taken, including jump height, ground reaction forces, joint angles, and joint moments, using a motion capture system. The significant effects of visual occlusion were as follows: 1) a decrease in the hip flexion angle at ground contact (p = 0.02), 2) an increase in Fx (medio-lateral ground reaction force), knee valgus, and internal rotation angles in the early phase within 80 ms after ground contact (p < 0.05), and 3) an increase in Fz (vertical ground reaction force) and a reduction in hip and knee flexion angles at peak Fz (p < 0.05). The amount of angular change at the ankle joint correlated with the hip and knee joints only under the EC condition (p < 0.05). These changes indicate modifications in landing strategy for safety and/or deficiencies in control for an efficient and accurate landing. In conclusion, visual information contributes to safe and accurate motor control during low-intensity landing movements.
REFERENCES (44)
1.
Arampatzis, A., Morey-Klapsing, G., & Brüggemann, G. P. (2003). The effect of falling height on muscle activity and foot motion during landings. Journal of Electromyography and Kinesiology, 13(6), 533–544. https://doi.org/10.1016/S1050-....
 
2.
Avela, J., Santos, P. M., Komi, P. V. (1996). Effects of differently induced stretch loads on neuromuscular control in drop jump exercise. European Journal of Applied Physiology, 72(5), 553–562.
 
3.
Boguszewski, D. V., Cheung, E. C., Joshi, N. B., Markolf, K. L., & McAllister, D. R. (2015). Male-female differences in knee laxity and stiffness. American Journal of Sports Medicine, 43(12), 2982–2987. https://doi.org/10.1177/036354....
 
4.
Brophy, R., Silvers, H. J., Gonzales, T., & Mandelbaum, B. R. (2010). Gender influences: The role of leg dominance in ACL injury among soccer players. British Journal of Sports Medicine, 44(10), 694–697. https://doi.org/10.1136/bjsm.2....
 
5.
Chu, Y., Sell, T. C., Abt, J. P., & Nagai, T. (2012). Air assault soldiers demonstrate more dangerous landing biomechanics when visual input is removed. Military Medicine, 177(1), 41–47.
 
6.
Cronström, A., Creaby, M. W., Nae, J., & Ageberg, E. (2016). Gender differences in knee abduction during weight-bearing activities: A systematic review and meta-analysis. Gait and Posture, 49, 315–328. https://doi.org/10.1016/j.gait....
 
7.
Duncan, A., & Mcdonagh, M. J. N. (2000). Stretch reflex distinguished from pre-programmed muscle activations following landing impacts in man. Journal of Physiology, 526(2), 457–468.
 
8.
Ford, K. R., Shapiro, R., Myer, G. D., Van Den Bogert, A. J., & Hewett, T. E. (2010). Longitudinal sex differences during landing in knee abduction in young athletes. Medicine and Science in Sports and Exercise, 42(10), 1923–1931. https://doi.org/10.1249/MSS.0b....
 
9.
Harato, K., Sakurai, A., Morishige, Y., Kobayashi, S., Niki, Y., & Nagura, T. (2019). Biomechanical correlation at the knee joint between static lunge and single-leg drop landing - a comparative study among three different toe directions. Journal of Experimental Orthopaedics, 6(1), 42. https://doi.org/10.1186/s40634....
 
10.
Hobara, H., Inoue, K., Omuro, K., Muraoka, T., & Kanosue, K. (2011). Determinant of leg stiffness during hopping is frequency-dependent. European Journal of Applied Physiology, 111(9), 2195–2201. https://doi.org/10.1007/s00421....
 
11.
Hobara, H., Kanosue, K., & Suzuki, S. (2007). Changes in muscle activity with increase in leg stiffness during hopping. Neuroscience Letters, 418(1), 55–59. https://doi.org/10.1016/j.neul....
 
12.
Hobara, H., Muraoka, T., Omuro, K., Gomi, K., Sakamoto, M., Inoue, K., & Kanosue, K. (2009). Knee stiffness is a major determinant of leg stiffness during maximal hopping. Journal of Biomechanics, 42(11), 1768–1771. https://doi.org/10.1016/j.jbio....
 
13.
Horita, T., Komi, P., Nicol, C., & Kyrolainen, H. (1996). Stretch shortening cycle fatigue: Interactions among joint stiness, reflex, and muscle mechanical performance in the drop jump. European Journal of Applied Physiology and Occupational Physiology, 73(5), 393–403. https://doi.org/10.1007/BF0033....
 
14.
Inoue, S. (1999). The annual change of women’s college students body measurements (2). Annual Reports of Studies, Bunkyo Univ Women’s College, 43, 35–48.
 
15.
Khamis, S., & Yizhar, Z. (2007). Effect of feet hyperpronation on pelvic alignment in a standing position. Gait and Posture, 25(1), 127–134. https://doi.org/10.1016/j.gait....
 
16.
Kiapour, A. M., Demetropoulos, C. K., Kiapour, A., Quatman, C. E., Wordeman, S. C., Goel, V. K., & Hewett, T. E. (2016). Strain Response of the Anterior Cruciate Ligament to Uniplanar and Multiplanar Loads during Simulated Landings. American Journal of Sports Medicine, 44(8), 2087–2096. https://doi.org/10.1177/036354....
 
17.
Koga, H., Nakamae, A., Shima, Y., Iwasa, J., Myklebust, G., Engebretsen, L., Bahr, R., & Krosshaug, T. (2010). Mechanisms for noncontact anterior cruciate ligament injuries: Knee joint kinematics in 10 injury situations from female team handball and basketball. American Journal of Sports Medicine, 38(11), 2218–2225. https://doi.org/10.1177/036354....
 
18.
Komi, P. V. (2003). Stretch-shortening cycle. In P. V Komi (Ed.), Strength and power in sports (2nd ed., pp. 184–202). Blackwell Science Ltd.
 
19.
Krosshaug, T., Nakamae, A., Boden, B. P., Engebretsen, L., Smith, G., Slauterbeck, J. R., Hewett, T. E., & Bahr, R. (2007). Mechanisms of anterior cruciate ligament injury in basketball: Video analysis of 39 cases. American Journal of Sports Medicine, 35(3), 359–367. https://doi.org/10.1177/036354....
 
20.
Kuitunen, S., Ogiso, K., & Komi, P. V. (2011). Leg and joint stiffness in human hopping. Scandinavian Journal of Medicine and Science in Sports, 21(6), 159–167. https://doi.org/10.1111/j.1600....
 
21.
Lepley, A. S., & Kuenze, C. M. (2018). Hip and knee kinematics and kinetics during landing tasks after anterior cruciate ligament reconstruction: A systematic review and meta-analysis. Journal of Athletic Training, 53(2), 144–159. https://doi.org/10.4085/1062-6....
 
22.
Leukel, C., Taube, W., Lorch, M., & Gollhofer, A. (2012). Changes in predictive motor control in drop-jumps based on uncertainties in task execution. Human Movement Science, 31(1), 152–160. https://doi.org/10.1016/j.humo....
 
23.
Li, Y., Ko, J., Walker, M. A., Brown, C. N., & Simpson, K. J. (2021). Joint coordination and stiffness during landing in individuals with chronic ankle instability. Journal of Applied Biomechanics, 37(2), 156–162. https://doi.org/10.1123/JAB.20....
 
24.
Louw, Q., Gillion, N., van Niekerk, S. M., Morris, L., & Baumeister, J. (2015). The effect of vision on knee biomechanics during functional activities - A systematic review. Journal of Science and Medicine in Sport, 18(4), 469–474. https://doi.org/10.1016/j.jsam....
 
25.
Márquez, G., Morenilla, L., Taube, W., & Fernández-del-Olmo, M. (2014). Effect of surface stiffness on the neural control of stretch-shortening cycle movements. Acta Physiologica, 212(3), 214–225. https://doi.org/10.1111/apha.1....
 
26.
Mclelsh, R. D., & Charnley, J. (1970). Abduction forces in the one-legged stance. Journal of Biomechanics, 3(2), 191–209. https://doi.org/10.1016/0021-9....
 
27.
Motooka, T., Tanaka, H., Ide, S., Mawatari, M., & Hotokebuchi, T. (2012). Foot pressure distribution in patients with gonarthrosis. Foot, 22(2), 70–73. https://doi.org/10.1016/j.foot....
 
28.
Pappas, E., Hagins, M., Sheikhzadeh, A., Nordin, M., Sci, M., & Rose, D. (2007). Biomechanical Differences Between Unilateral and Bilateral Landings From a Jump: Gender Differences. Clinical Journl of Sport Medicine, 17(4), 263–268. http://journals.lww.com/cjspor....
 
29.
Pollard, C. D., Sigward, S. M., & Powers, C. M. (2010). Limited hip and knee flexion during landing is associated with increased frontal plane knee motion and moments. Clinical Biomechanics, 25(2), 142–146. https://doi.org/10.1016/j.clin....
 
30.
Prieske, O., Muehlbauer, T., Mueller, S., Krueger, T., Kibele, A., Behm, D. G., & Granacher, U. (2013). Effects of surface instability on neuromuscular performance during drop jumps and landings. European Journal of Applied Physiology, 113(12), 2943–2951. https://doi.org/10.1007/s00421....
 
31.
Ruedl, G., Webhofer, M., Helle, K., Strobl, M., Schranz, A., Fink, C., Gatterer, H., & Burtscher, M. (2012). Leg dominance is a risk factor for noncontact anterior cruciate ligament injuries in female recreational skiers. American Journal of Sports Medicine, 40(6), 1269–1273. https://doi.org/10.1177/036354....
 
32.
Santello, M., & Mcdonagh, M. J. N. (1998). The control of timing and amplitude of EMG activity in landing movements in humans. Experimental Physiology, 83(6), 857–874.
 
33.
Santello, M., McDonagh, M. J. N., & Challis, J. H. (2001). Visual and non-visual control of landing movements in humans. Journal of Physiology, 537(1), 313–327.
 
34.
Shin, C. S., Chaudhari, A. M., & Andriacchi, T. P. (2011). Valgus plus internal rotation moments increase anterior cruciate ligament strain more than either alone. Medicine and Science in Sports and Exercise, 43(8), 1484–1491. https://doi.org/10.1249/MSS.0b....
 
35.
Taube, W., Leukel, C., Lauber, B., & Gollhofer, A. (2012a). The drop height determines neuromuscular adaptations and changes in jump performance in stretch-shortening cycle training. Scandinavian Journal of Medicine and Science in Sports, 22(5), 671–683. https://doi.org/10.1111/j.1600....
 
36.
Taube, W., Leukel, C., & Gollhofer, A. (2012b). How neurons make us jump: the neural control of stretch-shortening cycle movements. Exercise and Sport Science Reviews, 40(2), 106–115.
 
37.
Trigsted, S. M., Post, E. G., & Bell, D. R. (2017). Landing mechanics during single hop for distance in females following anterior cruciate ligament reconstruction compared to healthy controls. Knee Surgery, Sports Traumatology, Arthroscopy, 25(5), 1395–1402. https://doi.org/10.1007/s00167....
 
38.
Vermeulen, S., Bleecker, C., Blaiser, C., Kilinç, Ö. O., Willems, T., Vanrenterghem, J., Roosen, P., & Ridder, R. (2023). The Effect of Fatigue on Trunk and Pelvic Jump-Landing Biomechanics in View of Lower Extremity Loading: A Systematic Review. Journal of Human Kinetics, 86, 73–95. https://doi.org/10.5114/jhk/15....
 
39.
Warathanagasame, P., Sakulsriprasert, P., Sinsurin, K., Richards, J., & McPhee, J. S. (2023). Comparison of Hip and Knee Biomechanics during Sidestep Cutting in Male Basketball Athletes with and without Anterior Cruciate Ligament Reconstruction. Journal of Human Kinetics, 88, 17–27. https://doi.org/10.5114/jhk/16....
 
40.
Whatman, C., Hume, P., & Hing, W. (2013). Kinematics during lower extremity functional screening tests in young athletes - Are they reliable and valid? Physical Therapy in Sport, 14(2), 87–93. https://doi.org/10.1016/j.ptsp....
 
41.
Withrow, T. J., Huston, L. J., Wojtys, E. M., & Ashton-Miller, J. A. (2006). The effect of an impulsive knee valgus moment on in vitro relative ACL strain during a simulated jump landing. Clinical Biomechanics, 21(9), 977–983. https://doi.org/10.1016/j.clin....
 
42.
Wu, G., Siegler, S., Allard, P., Kirtley, C., Leardini, A., Rosenbaum, D., Whittle, M., D’Lima, D. D., Cristofolini, L., Witte, H., Schmid, O., & Stokes, I. (2002). ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion--part I: ankle, hip, and spine. International Society of Biomechanics. Journal of Biomechanics, 35(4), 543–548.
 
43.
Yeow, C. H., Lee, P. V. S., & Goh, J. C. H. (2011). An investigation of lower extremity energy dissipation strategies during single-leg and double-leg landing based on sagittal and frontal plane biomechanics. Human Movement Science, 30(3), 624–635. https://doi.org/10.1016/j.humo....
 
44.
Zuur, A. T., Lundbye-Jensen, J., Leukel, C., Taube, W., Grey, M. J., Gollhofer, A., Nielsen, J. B., & Gruber, M. (2010). Contribution of afferent feedback and descending drive to human hopping. Journal of Physiology, 588(5), 799–807. https://doi.org/10.1113/jphysi....
 
eISSN:1899-7562
ISSN:1640-5544
Journals System - logo
Scroll to top