SECTION I - KINESIOLOGY / RESEARCH PAPER
Effect of Increasing the Foot Area on the Load-Velocity Relationship of the Underwater Dolphin Kick
,
 
,
 
,
 
 
 
More details
Hide details
1
School of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong, China.
 
2
College of Physical Education and Health, Guangdong Polytechnic Normal University, Guangzhou, Guangdong, China.
 
These authors had equal contribution to this work
 
 
Submission date: 2023-09-30
 
 
Final revision date: 2023-12-19
 
 
Acceptance date: 2024-06-07
 
 
Online publication date: 2024-12-06
 
 
Corresponding author
Yupeng Shen   

School of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong, China, China
 
 
 
KEYWORDS
TOPICS
ABSTRACT
The objective of this study was to evaluate the impact of augmenting the foot area (by wearing fins) on the load-velocity relationship of the underwater dolphin kick (UDK) and to investigate the optimal loading zone of resistance training for the UDK. Seventeen swimmers underwent a semi-tethered swimming test and a 15-m maximum swim velocity test, both with and without fins (FINS and WF, respectively). The study revealed that the UDK's load-velocity relationship, when using semi-tethered swimming, displayed a robust linear correlation (R2 = 0.88 ± 0.15). The FINS condition enhanced the optimization of the load-velocity relationship, resulting in a substantial rightward shift (R2, AIC, BIC optimized by 15%–65%) and elevating the UDK velocity by 10%–22% across seven load levels. The effective load level rose from 57 N to 69 N (R = 0.70–0.85, p < 0.05); however, the FINS condition altered the original UDK technique, leading to a 7% decrease in the stroke rate (SR) and a 19% increase in stroke length (SL). Consequently, wearing fins modified the load-velocity relationship of the UDK and augmented the power output level. We recommend that athletes use semi-traction swimming to improve UDK performance with a maximum load of no more than 57 N or a velocity of no less than 73% of maximum velocity; wearing fins allows this range to be extended to 69 N and 71% of maximum velocity.
REFERENCES (28)
1.
Atkison, R. R., Dickey, J. P., Dragunas, A., & Nolte, V. (2014). Importance of sagittal kick symmetry for underwater dolphin kick performance. Human Movement Science, 33, 298–311. https://doi.org/10.1016/j.humo....
 
2.
Baena-Raya, A., García-Mateo, P., García-Ramos, A., Rodríguez-Pérez, M. A., & Soriano-Maldonado, A. (2021). Delineating the potential of the vertical and horizontal force-velocity profile for optimizing sport performance: a systematic review. Journal of Sports Sciences, 40(3), 331–344. https://doi.org/10.1080/026404....
 
3.
Bielec, G., Makar, P., Laskowski, R., & Olek, R. A. (2013). Kinematic variables and blood acid-base status in the analysis of collegiate swimmers' anaerobic capacity. Biology of Sport, 30(3), 213-217. https://doi.org/10.5604/208318....
 
4.
Bielec, G.; Gozdziejewska, A., & Makar, P. (2021). Changes in Body Composition and Anthropomorphic Measurements in Children Participating in Swimming and Non-Swimming Activities. Children, 8 (7), 529. https://doi.org/10.3390/childr....
 
5.
Bobbert, M. F., Casius, L. J. R., & Van Soest, A. J. (2016). The relationship between pedal force and crank angular velocity in sprint cycling. Medicine & Science in Sports & Exercise, 48(5), 869–878. https://doi.org/10.1249/mss.00....
 
6.
Cross, M. R., Brughelli, M., Samozino, P., & Morin, J.-B. (2016). Methods of power-force-velocity profiling during sprint running: a narrative review. Sports Medicine, 47(7), 1255–1269. https://doi.org/10.1007/s40279....
 
7.
Demirkan, E, Ozkadi, T, Alagoz, I, Cagla Caglar, E, & Camici, F. Age-related physical and performance changes in young swimmers: The comparison of predictive models in 50-meter swimming performance. Balt J Health Phys Act. 2023;15(2): Article4. https://doi.org/10.29359/BJHPA....
 
8.
Dominguez-Castells, R., & Arellano, R. (2012). Effect of different loads on stroke and coordination parameters during freestyle semi-tethered swimming. Journal of Human Kinetics, 32(1), 33–41. https://doi.org/10.2478/v10078....
 
9.
Dominguez-Castells, R., Izquierdo, M., & Arellano, R. (2012). An updated protocol to assess arm swimming power in front crawl. International Journal of Sports Medicine, 34(04), 324–329. https://doi.org/10.1055/s-0032....
 
10.
Fischer, S., & Kibele, A. (2016). The biomechanical structure of swim start performance. Sports Biomechanics, 15(4), 397–408. https://doi.org/10.1080/147631....
 
11.
Fish, F. E. (1993). Power output and propulsive efficiency of swimming bottlenose dolphins (tursiops truncatus). Journal of Experimental Biology, 185(1), 179–193. https://doi.org/10.1242/jeb.18....
 
12.
García-Ramos, A., Jaric, S., Padial, P., & Feriche, B. (2016). Force-Velocity Relationship of Upper Body Muscles: Traditional Versus Ballistic Bench Press. Journal of Applied Biomechanics, 32(2), 178–185. https://doi.org/10.1123/jab.20....
 
13.
Girold, S., Calmels, P., Maurin, D., Milhau, N., & Chatard, J.-C. (2006). Assisted and resisted sprint training in swimming. Journal of Strength and Conditioning Research, 20(3), 547. https://doi.org/10.1519/r-1675....
 
14.
Girold, S., Maurin, D., Dugué, B., Chatard, J.-C., & Millet, G. (2007). Effects of dry-land vs. resisted- and assisted-sprint exercises on swimming sprint performances. Journal of Strength and Conditioning Research, 21(2), 599. https://doi.org/10.1519/r-1969....
 
15.
Gonjo, T., Eriksrud, O., Papoutsis, F., & Olstad, B. H. (2020). Relationships between a Load-velocity Profile and Sprint Performance in Butterfly Swimming. International Journal of Sports Medicine, 41(7), 461–467. https://doi.org/10.1055/a-1103....
 
16.
Gonjo, T., Ljødal, I., Karlsson, R., & Olstad, B. H. (2022). Load-velocity slope can be an indicator of the active drag in front crawl swimming. ISBS Proceedings Archive, 40(1), 59.
 
17.
Loebbecke, A. von, Mittal, R., Fish, F., & Mark, R. (2009). A comparison of the kinematics of the dolphin kick in humans and cetaceans. Human Movement Science, 28(1), 99–112. https://doi.org/10.1016/j.humo....
 
18.
Lopes, T. J., Morais, J. E., Pinto, M. P., & Marinho, D. A. (2022). Numerical and experimental methods used to evaluate active drag in swimming: a systematic narrative review. Frontiers in Physiology, 13, 938658. https://doi.org/10.3389/fphys.....
 
19.
Matos, C. C. de, Carvalho Barbosa, A., & De Souza Castro, F. A. (2013). The use of hand paddles and fins in front crawl: biomechanical and physiological responses. Revista Brasileira de Cineantropometria e Desempenho Humano, 15(3), 382–392. https://doi.org/10.5007/1980-0....
 
20.
Morin, J.-B., & Samozino, P. (2016). Interpreting power-force-velocity profiles for individualized and specific training. International Journal of Sports Physiology and Performance, 11(2), 267–272. https://doi.org/10.1123/ijspp.....
 
21.
Matsuura, Y., Matsunaga, N., Iizuka, S., Akuzawa, H., & Kaneoka, K. (2020). Muscle Synergy of the Underwater Undulatory Swimming in Elite Male Swimmers. Frontiers in Sports and Active Living, 2, 62. https://doi.org/10.3389/fspor.....
 
22.
Neiva, H. P., Marques, M. C., Barbosa, T. M., Izquierdo, M., & Marinho, D. A. (2013). Warm-up and performance in competitive swimming. Sports Medicine, 44(3), 319–330. https://doi.org/10.1007/s40279....
 
23.
Olstad, B. H., Gonjo, T., Njøs, N., Abächerli, K., & Eriksrud, O. (2020). Reliability of Load-Velocity Profiling in Front Crawl Swimming. Frontiers in Physiology, 11, 574306. https://doi.org/10.3389/fphys.....
 
24.
Olstad, B. H., Ljødal, I., Karlsson, R., & Gonjo, T. (2022). The relationship between backstroke swimming sprint performance and load-velocity profiles. ISBS Proceedings Archive, 40(1), 128.
 
25.
Ruiz-Navarro, J. J., López-Belmonte, Ó., Cuenca-Fernández, F., Gay, A., Arellano, R. (2024). The Effects of Eccentric Training on Undulatory Underwater Swimming Performance and Kinematics in Competitive Swimmers. Journal of Human Kinetics, 93, 53–68. https://doi.org/10.5114/jhk/17....
 
26.
Soncin, R., Szmuchrowski, L. A., Oliveira Claudino, J. G., Ferreira, J. C., Pinho, J., Vilas-Boas, J. P., Amadio, A. C., Huebner, R., Serrão, J. C., & Mezêncio, B. (2021). A semi-tethered swimming test better predicts maximal swimming velocity if drag force is considered. Revista Portuguesa de Ciências Do Desporto, 21(1), 11–21. https://doi.org/10.5628/rpcd.2....
 
27.
Veiga, S., Qiu, X., Trinidad, A., Ertas Dolek, B., De la Rubia, A., Navarro, E. (2024). Effect of the Skill, Gender, and Kick Order on the Kinematic Characteristics of Underwater Undulatory Swimming in the Dorsal Position. Journal of Human Kinetics, 90, 45–56. https://doi.org/10.5114/jhk/16....
 
28.
Zamparo, P., Pendergast, D., Termin, B., & Minetti, A. (2002). How fins affect the economy and efficiency of human swimming. Journal of Experimental Biology, 205(17), 2665–2676.
 
eISSN:1899-7562
ISSN:1640-5544
Journals System - logo
Scroll to top