SECTION I - KINESIOLOGY / RESEARCH PAPER
Understanding the Importance of Drag Coefficient Assessment for a Deeper Insight into the Hydrodynamic Profile of Swimmers
,
 
,
 
,
 
 
 
 
More details
Hide details
1
Department of Sports Sciences, Instituto Politécnico de Bragança, Bragança, Portugal
 
2
Research Center in Sports, Health, and Human Development (CIDESD), Covilhã, Portugal
 
3
Department of Sports Sciences, University of Beira Interior, Covilhã, Portugal
 
4
Department of Sports Sciences, Polytechnic Institute of Guarda, Guarda, Portugal
 
 
Submission date: 2023-06-11
 
 
Final revision date: 2023-08-09
 
 
Acceptance date: 2023-09-18
 
 
Publication date: 2023-11-28
 
 
Corresponding author
Jorge Morais   

Sports, Instituto Politécnico de Bragança, Portugal
 
 
Journal of Human Kinetics 2024;92:19-27
 
KEYWORDS
TOPICS
ABSTRACT
The main objective of this study was to confirm that the passive drag coefficient is less dependent on swimming speed than the passive drag, Froude, and Reynolds numbers, even as swimming speed increases. The sample consisted of 12 young proficient non-competitive swimmers (seven males and five females: 20.4 ± 1.9 years). Passive drag was measured with a low-voltage isokinetic engine at 1.2, 1.4, 1.6 and 1.8 m/s. The frontal surface area was measured using digital photogrammetry. Passive drag showed significant differences with a strong effect size over the four towing speeds measured (F = 116.84, p < 0.001, η2 = 0.91) with a quadratic relationship with speed. The Froude and Reynolds numbers had similar trends, but with linear relationships. Conversely, the passive drag coefficient showed non-significant differences across the four towing speeds (F = 3.50, p = 0.062, η2 = 0.33). This strongly suggests that the passive drag coefficient should be the variable of choice for monitoring the hydrodynamic profile of swimmers rather than the absolute value of passive drag.
 
REFERENCES (28)
1.
Belmonte, Ó., González-Ponce, Á., & Cuenca-Fernández, F. (2022). Are the 50 m race segments changed from heats to finals at the 2021 European Swimming Championships? Frontiers in Physiology, 13, 797367. doi: 10.3389/fphys.2022.797367.
 
2.
Barbosa, T. M., Costa, M. J., Morais, J. E., Morouço, P., Moreira, M., Garrido, N. D., Marinho, D. A., & Silva, A. J. (2013). Characterization of speed fluctuation and drag force in young swimmers: A gender comparison. Human Movement Science, 32(6), 1214–1225. doi: 10.1016/j.humov.2012.07.009.
 
3.
Blocken, B., van Druenen, T., Toparlar, Y., & Andrianne, T. (2018). Aerodynamic analysis of different cyclist hill descent positions. Journal of Wind Engineering and Industrial Aerodynamics, 181, 27–45. doi: 10.1016/j.jweia.2018.08.010.
 
4.
Brownlie, L. (2021). Aerodynamic drag reduction in winter sports: The quest for “free speed”. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 235(4), 365–404. doi: 10.1177/1754337120921091.
 
5.
Chatard, J., Bourgoin, B., & Lacour, J. (1990a). Passive drag is still a good evaluator of swimming aptitude. European Journal of Applied Physiology and Occupational Physiology, 59, 399–404. doi: 10.1007/BF02388619.
 
6.
Chatard, J., Lavoie, J., Bourgoin, B., & Lacour, J. (1990b). The contribution of passive drag as a determinant of swimming performance. International Journal of Sports Medicine, 11(05), 367–372. doi: 10.1055/s-2007-1024820.
 
7.
Ferguson, C. J. (2009). An effect size primer: A guide for clinicians and researchers. Professional Psychology: Research and Practice, 40(5), 532–538. https://doi.org/10.1037/a00158....
 
8.
Formosa, D. P., Toussaint, H. M., Mason, B. R., & Burkett, B. (2012). Comparative analysis of active drag using the MAD system and an assisted towing method in front crawl swimming. Journal of Applied Biomechanics, 28(6), 746–750. doi: 10.1123/jab.28.6.746.
 
9.
Gatta, G., Cortesi, M., & Zamparo, P. (2016). The relationship between power generated by thrust and power to overcome drag in elite short distance swimmers. PLoS One, 11(9), e0162387. doi: 10.1371/journal.pone.0162387.
 
10.
Gatta, G., Zamparo, P., & Cortesi, M. (2013). Effect of swim cap model on passive drag. Journal of Strength and Conditioning Research, 27(10), 2904–2908. doi: 10.1519/JSC.0b013e318280cc3a.
 
11.
Hopkins, W. (2002). A scale of magnitudes for effect statistics: A new view of statistics. http://sportsci. org/resource/stats/effectmag.html (accessed on 10 October 2022).
 
12.
Kolmogorov, S. V., & Duplishcheva, O. A. (1992). Active drag, useful mechanical power output and hydrodynamic force coefficient in different swimming strokes at maximal velocity. Journal of Biomechanics, 25(3), 311–318. doi: 10.1016/0021-9290(92)90028-y.
 
13.
Kuberski, M., Polak, A., Szołtys, B., Markowski, K., & Zarzeczny, R. (2022). Associations between selected biological features and absolute and relative swimming performance of prepubescent boys over a 3‐year swimming training program: A longitudinal study. Journal of Human Kinetics, 83, 143–153. https://doi.org/10.2478/hukin-....
 
14.
McKay, A., Stellingwerff, T., Smith, E., Martin, D., Mujika, I., Goosey-Tolfrey, V., Sheppard, J., & Burke, L. (2022). Defining training and performance caliber: A participant classification framework. International Journal of Sports Physiology and Performance, 17(2), 317–331. doi: 10.1123/ijspp.2021-0451.
 
15.
Morais, J. E., Barbosa, T. M., Garrido, N. D., Cirilo-Sousa, M. S., Silva, A. J., & Marinho, D. A. (2023). Agreement between different methods to measure the active drag coefficient in front-crawl swimming. Journal of Human Kinetics, 86, 41–49. doi: 10.5114/jhk/159605.
 
16.
Morais, J. E., Costa, M. J., Mejias, E. J., Marinho, D. A., Silva, A. J., & Barbosa, T. M. (2011). Morphometric study for estimation and validation of trunk transverse surface area to assess human drag force on water. Journal of Human Kinetics, 28(1), 5–13. doi: 10.2478/v10078-011-0017-x.
 
17.
Morais, J. E., Marinho, D. A., Arellano, R., and Barbosa, T. M. (2019). Start and turn performances of elite sprinters at the 2016 European Championships in swimming. Sports Biomechanics, 18(1), 100–114. doi: 10.1080/14763141.2018.1435713.
 
18.
Morais, J. E., Marques, M. C., Rodríguez-Rosell, D., Barbosa, T. M., & Marinho, D. A. (2020). Relationship between thrust, anthropometrics, and dry-land strength in a national junior swimming team. Physician and Sportsmedicine, 48(3), 304–311. doi: 10.1080/00913847.2019.1693240.
 
19.
Morais, J. E., Saavedra, J. M., Costa, M. J., Silva, A. J., Marinho, D. A., & Barbosa, T. M. (2013). Tracking young talented swimmers: Follow-up of performance and its biomechanical determinant factors. Acta of Bioengineering and Biomechanics, 15(3), 129–138. doi: 10.5277/abb130316.
 
20.
Narita, K., Nakashima, M., & Takagi, H. (2017). Developing a methodology for estimating the drag in front-crawl swimming at various velocities. Journal of Biomechanics, 54, 123–128. doi: 10.1016/j.jbiomech.2017.01.037.
 
21.
Neiva, H. P., Fernandes, R. J., Cardoso, R., Marinho, D. A., & Abraldes, J. A. (2021). Monitoring master swimmers’ performance and active drag evolution along a training mesocycle. International Journal of Environmental Research and Public Health, 18(7), 3569. doi: 10.3390/ijerph18073569.
 
22.
Pendergast, D., Mollendorf, J., Zamparo, P., Termin, A., Bushnell, D., & Paschke, D. (2005). The influence of drag on human locomotion in water. Undersea Hyperbaric Medicine, 32(1), 45–57.
 
23.
Siegel, A. F. (2016). Chapter 11—Correlation and regression: Measuring and predicting relationships. Practical Business Statistics, 7th ed.; Academic Press: Cambridge, MA, USA, 299–354.
 
24.
Silva, A. J., Rouboa, A., Moreira, A., Reis, V. M., Alves, F., Vilas-Boas, J. P., & Marinho, D. A. (2008). Analysis of drafting effects in swimming using computational fluid dynamics. Journal of Sports Science and Medicine, 7(1), 60–66.
 
25.
Toussaint, H. (2011). Biomechanics of drag and propulsion in front crawl swimming. In: World Book of Swimming: From Science to Performance (pp. 3–20). Nova Science Publishers, Inc.
 
26.
Toussaint, H. M., & Beek, P. J. (1992). Biomechanics of competitive front crawl swimming. Sports Medicine, 13, 8–24. doi: 10.2165/00007256-199213010-00002.
 
27.
Toussaint, H. M., Roos, P. E., & Kolmogorov, S. (2004). The determination of drag in front crawl swimming. Journal of Biomechanics, 37(11), 1655–1663. doi: 10.1016/j.jbiomech.2004.02.020.
 
28.
Zamparo, P., Gatta, G., Pendergast, D., & Capelli, C. (2009). Active and passive drag: The role of trunk incline. European Journal of Applied Physiology, 106(2), 195–205. doi: 10.1007/s00421-009-1007-.
 
eISSN:1899-7562
ISSN:1640-5544
Journals System - logo
Scroll to top