SECTION II - EXERCISE PHYSIOLOGY AND SPORTS MEDICINE / REVIEW
High-Intensity Interval Training and Moderate-Intensity Continuous Training Affect Running Economy in Endurance Runners: A Systematic Review and Meta-Analysis of Randomized Controlled Trials
,
 
,
 
,
 
 
 
More details
Hide details
1
College of P.E. and Sport, Beijing Normal University, Beijing, China.
 
2
College of P.E. and Sport, Qinghai Normal University, Xining, China.
 
 
Submission date: 2024-09-09
 
 
Final revision date: 2025-02-26
 
 
Acceptance date: 2025-05-21
 
 
Online publication date: 2025-09-23
 
 
Corresponding author
Donghui Tang   

college of P.E and Sports, Beijing normal university, No.19, Xinjiekouwai Street, 100000, beijing, China
 
 
 
KEYWORDS
TOPICS
ABSTRACT
This systematic review evaluated the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on running economy (RE) in endurance runners. The search was completed in March 2024 based on research databases, and the language of publication was restricted to English. The primary outcome measure was RE, and it was categorized into three subgroups: Zone 1 (Z1), Zone 2 (Z2), and Zone 3 (Z3). The secondary outcomes assessed were maximal oxygen uptake (VO2max) and blood lactate concentration. HIIT significantly improved RE compared to MICT (SMD = 0.44, 95% CI [0.15, 0.72], Z = 3.01, p < 0.05). MICT showed a greater effect on VO2max (MD = 2.48, 95% CI [1.61, 3.34], Z = 5.60, p < 0.05). HIIT was more effective at reducing blood lactate levels (MD = −0.15, 95% CI [−0.28, −0.02], Z = 2.20, p < 0.05). The results indicate that HIIT was more effective than MICT in enhancing RE and delaying lactate accumulation. HIIT can further improve RE and postpone blood lactate accumulation when performed at or below the lactate threshold (≤ Z2). VO2max was more pronounced with MICT. These findings suggest that endurance runners and coaches should choose appropriate methods to optimize physiological adaptations.
REFERENCES (119)
1.
Atakan, M. M., Guzel, Y., Shrestha, N., Kosar, S. N., Grgic, J., Astorino, T. A., Turnagol, H. H., & Pedisic, Z. (2022). Effects of high-intensity interval training (HIIT) and sprint interval training (SIT) on fat oxidation during exercise: a systematic review and meta-analysis. British Journal of Sports Medicine, 56(17), 988–996. https://doi.org/10.1136/bjspor....
 
2.
Barnes, K. R., & Kilding, A. E. (2015). Strategies to improve running economy. Sports Medicine, 45(1), 37–56. https://doi.org/10.1007/s40279....
 
3.
Baroni, B. M., Rodrigues, R., Franke, R. A., Geremia, J. M., Rassier, D. E., & Vaz, M. A. (2013). Time course of neuromuscular adaptations to knee extensor eccentric training. International Journal of Sports Medicine, 34(10), 904–911. https://doi.org/10.1055/s-0032....
 
4.
Black, M. I., Handsaker, J. C., Allen, S. J., Forrester, S. E., & Folland, J. P. (2018). Is there an optimal speed for economical running? International Journal of Sports Physiology and Performance, 13(1), 75–81. https://doi.org/10.1123/ijspp.....
 
5.
Bogdanis, G. C., Stavrinou, P., Fatouros, I. G., Philippou, A., Chatzinikolaou, A., Draganidis, D., Ermidis, G., & Maridaki, M. (2013). Short-term high-intensity interval exercise training attenuates oxidative stress responses and improves antioxidant status in healthy humans. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 61, 171–177. https://doi.org/10.1016/j.fct.....
 
6.
Buchheit, M., & Laursen, P. B. (2013). High-intensity interval training, solutions to the programming puzzle. Part II: anaerobic energy, neuromuscular load and practical applications. Sports Medicine, 43(10), 927–954. https://doi.org/10.1007/s40279....
 
7.
Casado, A., González-Mohíno, F., González-Ravé, J. M., & Foster, C. (2022). Training periodization, methods, intensity distribution, and volume in highly trained and elite distance runners: a systematic review. International Journal of Sports Physiology and Performance, 17(6), 820–833. https://doi.org/10.1123/ijspp.....
 
8.
Che, K., Qiu, J., Yi, L., Zou, M., Li, Z., Carr, A., Snipe, R. M. J., & Benardot, D. (2021). Effects of a short-term “fat adaptation with carbohydrate restoration” diet on metabolic responses and exercise performance in well-trained runners. Nutrients, 13(3), 1033. https://doi.org/10.3390/nu1303....
 
9.
Clemente-Suárez, V. J., & Arroyo-Toledo, J. J. (2018). The use of autonomic modulation device to control training performance after High-Intensity interval training program. Journal of Medical Systems, 42(3), 47. https://doi.org/10.1007/s10916....
 
10.
Cocks, M., Shaw, C. S., Shepherd, S. O., Fisher, J. P., Ranasinghe, A., Barker, T. A., & Wagenmakers, A. J. (2016). Sprint interval and moderate-intensity continuous training have equal benefits on aerobic capacity, insulin sensitivity, muscle capillarisation and endothelial eNOS/NAD(P)Hoxidase protein ratio in obese men. Journal of Physiology, 594(8), 2307–2321. https://doi.org/10.1113/jphysi....
 
11.
Craven, J., McCartney, D., Desbrow, B., Sabapathy, S., Bellinger, P., Roberts, L., & Irwin, C. (2022). Effects of acute sleep loss on physical performance: a systematic and meta-analytical review. Sports Medicine, 52(11), 2669–2690. https://doi.org/10.1007/s40279....
 
12.
Creer, A. R., Ricard, M. D., Conlee, R. K., Hoyt, G. L., & Parcell, A. C. (2004). Neural, metabolic, and performance adaptations to four weeks of high intensity sprint-interval training in trained cyclists. International Journal of Sports Medicine, 25(2), 92–98. https://doi.org/10.1055/s-2004....
 
13.
Daussin, F. N., Zoll, J., Dufour, S. P., Ponsot, E., Lonsdorfer-Wolf, E., Doutreleau, S., Mettauer, B., Piquard, F., Geny, B., & Richard, R. (2008). Effect of interval versus continuous training on cardiorespiratory and mitochondrial functions: relationship to aerobic performance improvements in sedentary subjects. American Journal of Physiology Regulatory Integrative and Comparative Physiology, 295(1), R264–R272. https://doi.org/10.1152/ajpreg....
 
14.
Del Vecchio, A., Casolo, A., Negro, F., Scorcelletti, M., Bazzucchi, I., Enoka, R., Felici, F., & Farina, D. (2019). The increase in muscle force after 4 weeks of strength training is mediated by adaptations in motor unit recruitment and rate coding. Journal of Physiology, 597(7), 1873–1887. https://doi.org/10.1113/JP2772....
 
15.
Denadai, BS., Ortiz, MJ., Greco, CC., & Mello, MT. (2006). Interval training at 95% and 100% of the velocity at VO2max: effects on aerobic physiological indexes and running performance. Applied Physiology, Nutrition, and Metabolism, 31(6), 737–743. https://doi.org/10.1139/h06-08....
 
16.
Dohlmann, T. L., Hindsø, M., Dela, F., Helge, J. W., & Larsen, S. (2018). High-intensity interval training changes mitochondrial respiratory capacity differently in adipose tissue and skeletal muscle. Physiological Reports, 6(18), e13857. https://doi.org/10.14814/phy2.....
 
17.
Dolan, C., Quiles, J. M., Goldsmith, J. A., Mendez, K. M., Klemp, A., Robinson, Z. P., Pelland, J. C., Coccia, C., & Zourdos, M. C. (2024). The effect of time-equated concurrent training programs in resistance-trained men. Journal of Human Kinetics, 91, 87–103. https://doi.org/10.5114/jhk/18....
 
18.
Driller, M. W., Fell, J. W., Gregory, J. R., Shing, C. M., & Williams, A. D. (2009). The effects of high-intensity interval training in well-trained rowers. International Journal of Sports Physiology and Performance, 4(1), 110–121. https://doi.org/10.1123/ijspp.....
 
19.
D’Souza, R. F., Woodhead, J. S. T., Zeng, N., Blenkiron, C., Merry, T. L., Cameron-Smith, D., & Mitchell, C. J. (2018). Circulatory exosomal miRNA following intense exercise is unrelated to muscle and plasma miRNA abundances. American Journal of Physiology. Endocrinology and Metabolism, 315(4), E723–E733. https://doi.org/10.1152/ajpend....
 
20.
Ekkekakis, P., & Biddle, S. J. H. (2023). Extraordinary claims in the literature on high-intensity interval training (HIIT): IV. Is HIIT associated with higher long-term exercise adherence? Psychology of Sport and Exercise, 64, 102295. https://doi.org/10.1016/j.psyc....
 
21.
Enoksen, E., Shalfawi, S. A., & Tønnessen, E. (2011). The effect of high- vs. low-intensity training on aerobic capacity in well-trained male middle-distance runners. Journal of Strength and Conditioning Research, 25(3), 812–818. https://doi.org/10.1519/JSC.0b....
 
22.
Esfarjani, F., & Laursen, P. B. (2007). Manipulating high-intensity interval training: effects on VO2max, the lactate threshold and 3000 m running performance in moderately trained males. Journal of Science and Medicine in Sport, 10(1), 27–35. https://doi.org/10.1016/j.jsam....
 
23.
Estes, R. R., Malinowski, A., Piacentini, M., Thrush, D., Salley, E., Losey, C., & Hayes, E. (2017). The effect of high intensity interval run training on cross-sectional area of the vastus lateralis in untrained college students. International Journal of Exercise Science, 10(1), 137–145. https://doi.org/10.70252/ULIC9....
 
24.
Faelli, E., Panascì, M., Ferrando, V., Bisio, A., Filipas, L., Ruggeri, P., & Bove, M. (2021). The effect of static and dynamic stretching during warm-up on running economy and perception of effort in recreational endurance runners. International Journal of Environmental Research and Public Health, 18(16), 8386. https://doi.org/10.3390/ijerph....
 
25.
Farrell, P. A., Wilmore, J. H., Coyle, E. F., Billing, J. E., & Costill, D. L. (1979). Plasma lactate accumulation and distance running performance. Medicine and Science in Sports, 11(4), 338–344.
 
26.
Fay, L., Londeree, B. R., LaFontaine, T. P., & Volek, M. R. (1989). Physiological parameters related to distance running performance in female athletes. Medicine and Science in Sports and Exercise, 21(3), 319–324. https://doi.org/10.1249/000057....
 
27.
Festa, L., Tarperi, C., Skroce, K., La Torre, A., & Schena, F. (2020). Effects of different training intensity distribution in recreational runners. Frontiers in Sports and Active Living, 1, 70. https://doi.org/10.3389/fspor.....
 
28.
Flockhart, M., & Larsen, F. J. (2024). Continuous glucose monitoring in endurance athletes: interpretation and relevance of measurements for improving performance and health. Sports Medicine, 54(2), 247–255. https://doi.org/10.1007/s40279....
 
29.
Franch, J., Madsen, K., Djurhuus, M. S., & Pedersen, P. K. (1998). Improved running economy following intensified training correlates with reduced ventilatory demands. Medicine and Science in Sports and Exercise, 30(8), 1250–1256. https://doi.org/10.1097/000057..., R., Hawley, J. A., & Handschin, C. (2023). The molecular athlete: exercise physiology from mechanisms to medals. Physiological Reviews, 103(3), 1693–1787. https://doi.org/10.1152/physre....
 
30.
Gibala M. (2009). Molecular responses to high-intensity interval exercise. Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition et Metabolisme, 34(3), 428–432. https://doi.org/10.1139/H09-04....
 
31.
Gojanovic, B., Shultz, R., Feihl, F., & Matheson, G. (2015). Overspeed HIIT in lower-body positive pressure treadmill improves running performance. Medicine and Science in Sports and Exercise, 47(12), 2571–2578. https://doi.org/10.1249/MSS.00....
 
32.
Gonçalves, T. J. M., Boutillon, F., Lefebvre, S., Goffin, V., Iwatsubo, T., Wakabayashi, T., Oury, F., & Armand, A. S. (2019). Collagen XXV promotes myoblast fusion during myogenic differentiation and muscle formation. Scientific Reports, 9(1), 5878. https://doi.org/10.1038/s41598....
 
33.
González-Mohíno, F., González-Ravé, J. M., Juárez, D., Fernández, F. A., Barragán Castellanos, R., & Newton, R. U. (2016). Effects of continuous and interval training on running economy, maximal aerobic speed and gait kinematics in recreational runners. Journal of Strength and Conditioning Research, 30(4), 1059–1066. https://doi.org/10.1519/JSC.00....
 
34.
González-Mohíno, F., Santos-Concejero, J., Yustres, I., & González-Ravé, J. M. (2020). The effects of interval and continuous training on the oxygen cost of running in recreational runners: a systematic review and meta-analysis. Sports Medicine, 50(2), 283–294. https://doi.org/10.1007/s40279....
 
35.
Grieb, A., Schmitt, A., Fragasso, A., Widmann, M., Mattioni Maturana, F., Burgstahler, C., Erz, G., Schellhorn, P., Nieß, A. M., & Munz, B. (2023). Skeletal muscle microRNA patterns in response to a single bout of exercise in females: biomarkers for subsequent training adaptation? Biomolecules, 13(6), 884. https://doi.org/10.3390/biom13....
 
36.
Guo, Y., Xiao, C., Zhao, K., He, Z., Liu, S., Wu, X., Shi, S., Chen, Z., & Shi, R. (2022). Physical exercise modalities for the management of heart failure with preserved ejection fraction: a systematic review and meta-analysis. Journal of Cardiovascular Pharmacology, 79(5), 698–710. https://doi.org/10.1097/FJC.00....
 
37.
Hesketh, K., Shepherd, S. O., Strauss, J. A., Low, D. A., Cooper, R. J., Wagenmakers, A. J. M., & Cocks, M. (2019). Passive heat therapy in sedentary humans increases skeletal muscle capillarization and eNOS content but not mitochondrial density or GLUT4 content. American Journal of Physiology. Heart and Circulatory Physiology, 317(1), H114–H123. https://doi.org/10.1152/ajphea....
 
38.
Higgins, J. P., & Green, S. (2011). Cochrane handbook for systematic reviews of interventions version 5.1.0. In The Cochrane Collaboration. Available at: www.handbook.cochrane.org; accessed on: 27 March 2024.
 
39.
Higgins, J. P. T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M. J., Welch, V. A., & editors. (2023). Cochrane Handbook for Systematic Reviews of Interventions Version 6.4. 2023. Available at: www.training.cochrane.org/handbook; accessed on: 02 April 2024.
 
40.
Higgins, J. P., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. BMJ, 327(7414), 557. https://doi.org/10.1136/bmj.32....
 
41.
Holloszy, J. O., Rennie, M. J., Hickson, R. C., Conlee, R. K., & Hagberg, J. M. (1977). Physiological consequences of the biochemical adaptations to endurance exercise. Annals of the New York Academy of Sciences, 301, 440–450. https://doi.org/10.1111/j.1749....
 
42.
Hoogeveen, A. R. (2000). The effect of endurance training on the ventilatory response to exercise in elite cyclists. European Journal of Applied Physiology, 82(2), 45–51. https://doi.org/10.1007/s00421....
 
43.
Hov, H., Wang, E., Lim, Y. R., Trane, G., Hemmingsen, M., Hoff, J., & Helgerud, J. (2023). Aerobic high-intensity intervals are superior to improve V̇O2max compared with sprint intervals in well-trained men. Scandinavian Journal of Medicine and Science in Sports, 33(2), 146–159. https://doi.org/10.1111/sms.14....
 
44.
Jarstad, E., & Mamen, A. (2019). The performance and aerobic endurance effects of high-intensity versus moderate-intensity continuous running. Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition et Metabolisme, 44(9), 990–996. https://doi.org/10.1139/apnm-2....
 
45.
Jastrzębski, Z., Wakuluk-Lewandowska, D., Arslan, E., Kilit, B., Soylu, Y., & Radzimiński, Ł. (2025). Effects of eight-week game-based high-intensity interval training performed on different pitch dimensions on the level of physical capacity and time-motion responses in youth soccer players. Journal of Human Kinetics, 97, 157–168. https://doi.org/10.5114/jhk/19....
 
46.
Jones, A. M., Kirby, B. S., Clark, I. E., Rice, H. M., Fulkerson, E., Wylie, L. J., Wilkerson, D. P., Vanhatalo, A., & Wilkins, B. W. (2021). Physiological demands of running at 2-hour marathon race pace. Journal of Applied Physiology, 130(2), 369–379. https://doi.org/10.1152/japplp....
 
47.
Joyner, M. J., & Coyle, E. F. (2008). Endurance exercise performance: the physiology of champions. Journal of Physiology, 586(1), 35–44. https://doi.org/10.1113/jphysi....
 
48.
Jung, M. E., Bourne, J. E., Beauchamp, M. R., Robinson, E., & Little, J. P. (2015). High-intensity interval training as an efficacious alternative to moderate-intensity continuous training for adults with prediabetes. Journal of Diabetes Research, 2015(1), 191595. https://doi.org/10.1155/2015/1....
 
49.
Keir, D. A., Iannetta, D., Mattioni Maturana, F., Kowalchuk, J. M., & Murias, J. M. (2022). Identification of non-invasive exercise thresholds: methods, strategies, and an online App. Sports Medicine, 52(2), 237–255. https://doi.org/10.1007/s40279....
 
50.
Khanna, G. L., & Manna, I. (2005). Supplementary effect of carbohydrate-electrolyte drink on sports performance, lactate removal & cardiovascular response of athletes. Indian Journal of Medical Research, 121(5), 665–669.
 
51.
Kingsley, M. I., Wadsworth, D., Kilduff, L. P., McEneny, J., & Benton, D. (2005). Effects of phosphatidylserine on oxidative stress following intermittent running. Medicine and Science in Sports and Exercise, 37(8), 1300–1306. https://doi.org/10.1249/01.mss....
 
52.
Kjøbsted, R., Hingst, J. R., Fentz, J., Foretz, M., Sanz, M. N., Pehmøller, C., Shum, M., Marette, A., Mounier, R., Treebak, J. T., Wojtaszewski, J. F. P., Viollet, B., & Lantier, L. (2018). AMPK in skeletal muscle function and metabolism. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 32(4), 1741–1777. https://doi.org/10.1096/fj.201....
 
53.
Lamboley, C. R., Rouffet, D. M., Dutka, T. L., McKenna, M. J., & Lamb, G. D. (2020). Effects of high-intensity intermittent exercise on the contractile properties of human type I and type II skeletal muscle fibers. Journal of Applied Physiology, 128(5), 1207–1216. https://doi.org/10.1152/japplp....
 
54.
Laursen P. B. (2010). Training for intense exercise performance: high-intensity or high-volume training? Scandinavian Journal of Medicine & Science in Sports, 20 Suppl 2, 1–10. https://doi.org/10.1111/j.1600....
 
55.
Laursen, P. B., Marsh, S. A., Jenkins, D. G., & Coombes, J. S. (2007). Manipulating training intensity and volume in already well-trained rats: effect on skeletal muscle oxidative and glycolytic enzymes and buffering capacity. Applied physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition et Metabolisme, 32(3), 434–442. https://doi.org/10.1139/H07-00....
 
56.
Leite, C. D. F. C., Zovico, P. V. C., Rica, R. L., Barros, B. M., Machado, A. F., Evangelista, A. L., Leite, R. D., Barauna, V. G., Maia, A. F., & Bocalini, D. S. (2023). Exercise-induced muscle damage after a high-intensity interval exercise session: systematic review. International Journal of Environmental Research and Public Health, 20(22), 7082. https://doi.org/10.3390/ijerph....
 
57.
Liang, W., Liu, C., Yan, X., Hou, Y., Yang, G., Dai, J., & Wang, S. (2024). The impact of sprint interval training versus moderate intensity continuous training on blood pressure and cardiorespiratory health in adults: a systematic review and meta-analysis. PeerJ, 12, e17064. https://doi.org/10.7717/peerj.....
 
58.
Litleskare, S., Enoksen, E., Sandvei, M., Støen, L., Stensrud, T., Johansen, E., & Jensen, J. (2020). Sprint interval running and continuous running produce training specific adaptations, despite a similar improvement of aerobic endurance capacity a randomized trial of healthy adults. International Journal of Environmental Research and Public Health, 17(11), 3865. https://doi.org/10.3390/ijerph....
 
59.
Liu, B., Wu, J., Shi, Q., Hao, F., Xiao, W., Yu, J., Yu, F., & Ren, Z. (2022). Running economy and lower extremity stiffness in endurance runners: a systematic review and meta-analysis. Frontiers in Physiology, 13, 1059221. https://doi.org/10.3389/fphys.....
 
60.
Liu, H., Li, R., Zheng, W., Ramirez-Campillo, R., de Villarreal, E. S., & Zhang, M. (2024). The effect of combined strength, plyometric, and sprint training on repeated sprint ability in team-sport athletes: a systematic review and meta-analysis. Journal of Sports Science & Medicine, 23(4), 718–743. https://doi.org/10.52082/jssm.....
 
61.
Mandić, M., Hansson, B., Lovrić, A., Sundblad, P., Vollaard, N. B. J., Lundberg, T. R., Gustafsson, T., & Rullman, E. (2022). Improvements in maximal oxygen uptake after sprint-interval training coincide with increases in central hemodynamic factors. Medicine and Science in Sports and Exercise, 54(6), 944–952. https://doi.org/10.1249/MSS.00....
 
62.
Massart, J., Sjögren, R. J. O., Egan, B., Garde, C., Lindgren, M., Gu, W., Ferreira, D. M. S., Katayama, M., Ruas, J. L., Barrès, R., O’Gorman, D. J., Zierath, J. R., & Krook, A. (2021). Endurance exercise training-responsive miR-19b-3p improves skeletal muscle glucose metabolism. Nature Communications, 12(1), 5948. https://doi.org/10.1038/s41467....
 
63.
Maunder, E., Bradley, H. E., Deane, C. S., Hodgson, A. B., Jones, M., Joanisse, S., Turner, A. M., Breen, L., Philp, A., & Wallis, G. A. (2021). Effects of short-term graded dietary carbohydrate intake on intramuscular and whole-body metabolism during moderate-intensity exercise. Journal of Applied Physiology, 131(1), 376–387. https://doi.org/10.1152/japplp....
 
64.
Mayhew, T. P., Rothstein, J. M., Finucane, S. D., & Lamb, RL. (1995). Muscular adaptation to concentric and eccentric exercise at equal power levels. Medicine and Science in Sports and Exercise, 27(6), 868–873. https://doi.org/10.1249/000057....
 
65.
Mølmen, K. S., Almquist, N. W., & Skattebo, Ø. (2025). Effects of exercise training on mitochondrial and capillary growth in human skeletal muscle: a systematic review and meta-regression. Sports Medicine, 55(1), 115–144. https://doi.org/10.1007/s40279....
 
66.
Morais, J., Kilit, B., Arslan, E., Bragada, J., Soylu, Y., & Marinho, D. (2025). Effects of on-court tennis training combined with HIIT versus RST on aerobic capacity, speed, agility, jumping ability, and internal loads in young tennis players. Journal of Human Kinetics, 95, 173–185. https://doi.org/10.5114/jhk/18....
 
67.
Morgan, D. W., Bransford, D. R., Costill, D. L., Daniels, J. T., Howley, E. T., & Krahenbuhl, G. S. (1995). Variation in the aerobic demand of running among trained and untrained subjects. Medicine and Science in Sports and Exercise, 27(3), 404–409.
 
68.
Moritani, T., & deVries, H. A. (1979). Neural factors versus hypertrophy in the time course of muscle strength gain. American Journal of Physical Medicine, 58(3), 115–130.
 
69.
Mougin, F., Simon-Rigaud, M. L., Davenne, D., Renaud, A., Garnier, A., Kantelip, J. P., & Magnin, P. (1991). Effects of sleep disturbances on subsequent physical performance. European Journal of Applied Physiology and Occupational Physiology, 63(2), 77–82. https://doi.org/10.1007/BF0023....
 
70.
Munoz, I., Seiler, S., Alcocer, A., Carr, N., & Esteve-Lanao, J. (2015). Specific intensity for peaking: is race pace the best option? Asian Journal of Sports Medicine, 6(3), e24900. https://doi.org/10.5812/asjsm.....
 
71.
Nakagawa, S., & Cuthill, I. C. (2007). Effect size, confidence interval and statistical significance: a practical guide for biologists. Biological Reviews of the Cambridge Philosophical Society, 82(4), 591–605. https://doi.org/10.1111/j.1469....
 
72.
Nibbeling, N., Daanen, H. A., Gerritsma, R. M., Hofland, R. M., & Oudejans, R. R. (2012). Effects of anxiety on running with and without an aiming task. Journal of Sports Sciences, 30(1), 11–19. https://doi.org/10.1080/026404....
 
73.
Nuuttila, O. P., Nummela, A., Kyröläinen, H., Laukkanen, J., & Häkkinen, K. (2022). Physiological, perceptual, and performance responses to the 2-week block of high- versus low-intensity endurance training. Medicine and Science in Sports and Exercise, 54(5), 851–860. https://doi.org/10.1249/MSS.00....
 
74.
Page, M. J., McKenzie, J. E., Bossuyt, P. M., & et al. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n7....
 
75.
Parmar, A., Jones, T. W., & Hayes, P. R. (2021). The dose-response relationship between interval-training and VO2max in well-trained endurance runners: a systematic review. Journal of Sports Sciences, 39(12), 1410–1427. https://doi.org/10.1080/026404....
 
76.
Peake, J. M., Tan, S. J., Markworth, J. F., Broadbent, J. A., Skinner, T. L., & Cameron-Smith, D. (2014). Metabolic and hormonal responses to isoenergetic high-intensity interval exercise and continuous moderate-intensity exercise. American Journal of Physiology. Endocrinology and Metabolism, 307(7), E539–E552. https://doi.org/10.1152/ajpend....
 
77.
Perry, C. G., Heigenhauser, G. J., Bonen, A., & Spriet, L. L. (2008). High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle. Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition et Metabolisme, 33(6), 1112–1123. https://doi.org/10.1139/H08-09....
 
78.
Phillips, S. M., & Van Loon, L. J. C. (2011). Dietary protein for athletes: from requirements to metabolic advantage. Applied Physiology, Nutrition, and Metabolism, 36(5), 683–694.
 
79.
Rago, V., Krustrup, P., & Mohr, M. (2022). Performance and submaximal adaptations to additional speed-endurance training Vs. continuous moderate-intensity aerobic training in male endurance athletes. Journal of Human Kinetics, 83, 277–285. https://doi.org/10.2478/hukin-....
 
80.
Rakobowchuk, M., Tanguay, S., Burgomaster, K. A., Howarth, K. R., Gibala, M. J., & MacDonald, M. J. (2008). Sprint interval and traditional endurance training induce similar improvements in peripheral arterial stiffness and flow-mediated dilation in healthy humans. American Journal of Physiology. Regulatory Integrative and Comparative Physiology, 295(1), R236–R242. https://doi.org/10.1152/ajpreg....
 
81.
Ramos, J. S., Dalleck, L. C., Tjonna, A. E., Beetham, K. S., & Coombes, J. S. (2015). The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: a systematic review and meta-analysis. Sports Medicine, 45(5), 679–692. https://doi.org/10.1007/s40279....
 
82.
Reuter, M., Rosenberger, F., Barz, A., Venhorst, A., Blanz, L., Roecker, K., & Meyer, T. (2024). Effects on cardiorespiratory fitness of moderate-intensity training vs. energy-matched training with increasing intensity. Frontiers in Sports and Active Living, 5, 1298877. https://doi.org/10.3389/fspor.....
 
83.
Rimmele, U., Seiler, R., Marti, B., Wirtz, P. H., Ehlert, U., & Heinrichs, M. (2009). The level of physical activity affects adrenal and cardiovascular reactivity to psychosocial stress. Psychoneuroendocrinology, 34(2), 190–198. https://doi.org/10.1016/j.psyn....
 
84.
Rognmo, Ø., Moholdt, T., Bakken, H., Hole, T., Mølstad, P., Myhr, N. E., Grimsmo, J., & Wisløff, U. (2012). Cardiovascular risk of high- versus moderate-intensity aerobic exercise in coronary heart disease patients. Circulation, 126(12), 1436–1440. https://doi.org/10.1161/circul....
 
85.
Roy, M., Williams, S. M., Brown, R. C., Meredith-Jones, K. A., Osborne, H., Jospe, M., & Taylor, R. W. (2018). High-intensity interval training in the real world: outcomes from a 12-month intervention in overweight adults. Medicine and Science in Sports and Exercise, 50(9), 1818–1826. https://doi.org/10.1249/MSS.00....
 
86.
Ruegsegger, G. N., Pataky, M. W., Simha, S., Robinson, M. M., Klaus, K. A., & Nair, K. S. (2023). High-intensity aerobic, but not resistance or combined, exercise training improves both cardiometabolic health and skeletal muscle mitochondrial dynamics. Journal of Applied Physiology, 135(4), 763–774. https://doi.org/10.1152/japplp....
 
87.
Santos, A., Braaten, K., MacPherson, M., Vasconcellos, D., Vis-Dunbar, M., Lonsdale, C., Lubans, D., & Jung, ME. (2023). Rates of compliance and adherence to high-intensity interval training: a systematic review and meta-analyses. International Journal of Behavioral Nutrition and Physical Activity, 20(1), 134. https://doi.org/ 10.1186/s12966-023-01535-w.
 
88.
Saunders, P. U., Pyne, D. B., Telford, R. D., & Hawley, J. A. (2004). Factors affecting running economy in trained distance runners. Sports Medicine, 34(7), 465–485. https://doi.org/10.2165/000072....
 
89.
Sawyer, B. J., Tucker, WJ., Bhammar, DM., Ryder, JR., Sweazea, KL., & SGaesser, GA. (2016). Effects of high-intensity interval training and moderate-intensity continuous training on endothelial function and cardiometabolic risk markers in obese adults. Journal of Applied Physiology, 121(1), 279–288. https://doi.org/10.1152/japplp....
 
90.
Schaun, G. Z., Pinto, S. S., Silva, M. R., Dolinski, D. B., & Alberton, C. L. (2018). Whole-body high-intensity interval training induce similar cardiorespiratory adaptations compared with traditional high-intensity interval training and moderate-intensity continuous training in healthy men. Journal of Strength and Conditioning Research, 32(10), 2730–2742. https://doi.org/10.1519/JSC.00....
 
91.
Schommer, N. C., Hellhammer, D. H., & Kirschbaum, C. (2003). Dissociation between reactivity of the hypothalamus-pituitary-adrenal axis and the sympathetic-adrenal-medullary system to repeated psychosocial stress. Psychosomatic Medicine, 65(3), 450–460. https://doi.org/10.1097/01.psy....
 
92.
Seiler, K. S., & Kjerland, G. Ø. (2006). Quantifying training intensity distribution in elite endurance athletes: is there evidence for an optimal distribution? Scandinavian Journal of Medicine & Science in Sports, 16(1), 49–56. https://doi.org/10.1111/j.1600....
 
93.
Seiler, S., Haugen, O., & Kuffel, E. (2007). Autonomic recovery after exercise in trained athletes: intensity and duration effects. Medicine and Science in Sports and Exercise, 39(8), 1366–1373. https://doi.org/10.1249/mss.0b....
 
94.
Seo, M., Park, T., & Jung, H. C. (2024). Sex differences in heart rate variability and vascular function following high-Intensity interval training in young adults. Journal of Human Kinetics, 90, 89–100. https://doi.org/10.5114/jhk/17....
 
95.
Shaw, A. J., Ingham, S. A., Fudge, B. W., & Folland, J. P. (2013). The reliability of running economy expressed as oxygen cost and energy cost in trained distance runners. Applied Physiology, Nutrition, and Metabolism, 38(12), 1268–72. https://doi.org/ 10.1139/apnm-2013-0055.
 
96.
Silva, R., Damasceno, M., Cruz, R., Silva-Cavalcante, M. D., Lima-Silva, A. E., Bishop, D. J., & Bertuzzi, R. (2017). Effects of a 4-week high-intensity interval training on pacing during 5-km running trial. Brazilian Journal of Medical and Biological Research, 50(12), e6335. https://doi.org/10.1590/1414-4....
 
97.
Skelly, L. E., Gillen, J. B., Frankish, B. P., MacInnis, M. J., Godkin, F. E., Tarnopolsky, M. A., Murphy, R. M., & Gibala, M. J. (2021). Human skeletal muscle fiber type-specific responses to sprint interval and moderate-intensity continuous exercise: acute and training-induced changes. Journal of Applied Physiology, 130(4), 1001–1014. https://doi.org/10.1152/japplp....
 
98.
Skovgaard, C., Almquist, N.W., & Bangsbo, J. (2018a). The effect of repeated periods of speed endurance training on performance, running economy, and muscle adaptations. Scandinavian Journal of Medicine & Science in Sports, 28(2), 381–390. https://doi.org/10.1111/sms.12....
 
99.
Skovgaard, C., Christiansen, D., Christensen, P. M., Almquist, N. W., Thomassen, M., & Bangsbo, J. (2018b). Effect of speed endurance training and reduced training volume on running economy and single muscle fiber adaptations in trained runners. Physiological Reports, 6(3), e13601. https://doi.org/10.14814/phy2.....
 
100.
Sperlich, B., Zinner, C., Heilemann, I., Kjendlie, P. L., Holmberg, H. C., & Mester, J. (2010). High-intensity interval training improves VO(2peak), maximal lactate accumulation, time trial and competition performance in 9–11-year-old swimmers. European Journal of Applied Physiology, 110(5), 1029–1036. https://doi.org/10.1007/s00421....
 
101.
Stöggl, T. L., & Sperlich, B. (2015). The training intensity distribution among well-trained and elite endurance athletes. Frontiers in Physiology, 6, 295. https://doi.org/10.3389/fphys.....
 
102.
Tanji, F., & Nabekura, Y. (2019). Oxygen uptake and respiratory exchange ratio relative to the lactate threshold running in well-trained distance runners. Journal of Sports Medicine and Physical Fitness, 59(6), 895–901. https://doi.org/10.23736/S0022....
 
103.
Taylor, J. L., Holland, D. J., Keating, S. E., Leveritt, M. D., Gomersall, S. R., Rowlands, A. V., Bailey, T. G., & Coombes, J. S. (2020). Short-term and long-term feasibility, safety, and efficacy of high-intensity interval training in cardiac rehabilitation: the Fitr heart study randomized clinical trial. JAMA Cardiology, 5(12), 1382–1389. https://doi.org/10.1001/jamaca....
 
104.
Thomas, C., Sirvent, P., Perrey, S., Raynaud, E., & Mercier, J. (2004). Relationships between maximal muscle oxidative capacity and blood lactate removal after supramaximal exercise and fatigue indexes in humans. Journal of Applied Physiology, 97(6), 2132–2138. https://doi.org/10.1152/japplp....
 
105.
Torma, F., Gombos, Z., Jokai, M., Takeda, M., Mimura, T., & Radak, Z. (2019). High intensity interval training and molecular adaptive response of skeletal muscle. Sports Medicine and Health Science, 1(1), 24–32. https://doi.org/10.1016/j.smhs....
 
106.
Unhjem R. J. (2024). Changes in running economy and attainable maximal oxygen consumption in response to prolonged running: the impact of training status. Scandinavian Journal of Medicine & Science in Sports, 34(5), e14637. https://doi.org/10.1111/sms.14....
 
107.
Van Hooren, B., Jukic, I., Cox, M., Frenken, KG., Bautista, I., & Moore, IS. (2024). The relationship between running biomechanics and running economy: a systematic review and meta-analysis of observational studies. Sports Medicine, 54(5),1269–1316. https://doi.org/ 10.1007/s40279-024-01997-3.
 
108.
Vitale, K. C., Owens, R., Hopkins, S. R., & Malhotra, A. (2019). Sleep hygiene for optimizing recovery in athletes: review and recommendations. International Journal of Sports Medicine, 40(8), 535–543. https://doi.org/10.1055/a-0905....
 
109.
Vuorimaa, T., Vasankari, T., & Rusko, H. (2000). Comparison of physiological strain and muscular performance of athletes during two intermittent running exercises at the velocity associated with VO2max. International Journal of Sports Medicine, 21(2), 96–101. https://doi.org/10.1055/s-2000....
 
110.
Wang, F., Wang, X., Liu, Y., & Zhang, Z. (2021). Effects of exercise-induced ROS on the pathophysiological functions of skeletal muscle. Oxidative Medicine and Cellular Longevity, 2021, 3846122. https://doi.org/10.1155/2021/3....
 
111.
Wang, T. Y., Ho, C. F., Chan, K. H., Lee, W. C., & Hsu, M. C. (2012). Effects of consecutive 7-day high- versus moderate-intensity training on endurance determinants and muscle damage in basketball players. International SportMed Journal, 13(1), 18–28.
 
112.
Wang, Z., & Wang, J. (2024). The effects of high-intensity interval training versus moderate-intensity continuous training on athlete aerobic endurance performance parameters. European Journal of Applied Physiology, 124(8), 2235–2249. https://doi.org/10.1007/s00421....
 
113.
Webb, H. E., Weldy, M. L., Fabianke-Kadue, E. C., Orndorff, G. R., Kamimori, G. H., & Acevedo, E. O. (2008). Psychological stress during exercise: cardiorespiratory and hormonal responses. European Journal of Applied Physiology, 104(6), 973–981. https://doi.org/10.1007/s00421....
 
114.
Wen, D., Utesch, T., Wu, J., Robertson, S., Liu, J., Hu, G., & Chen, H. (2019). Effects of different protocols of high intensity interval training for VO2max improvements in adults: a meta-analysis of randomised controlled trials. Journal of Science and Medicine in Sport, 22(8), 941–947. https://doi.org/10.1016/j.jsam....
 
115.
Weston, A. R., Myburgh, K. H., Lindsay, F. H., Dennis, S. C., Noakes, T. D., & Hawley, J. A. (1997). Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclists. European Journal of Applied Physiology and Occupational Physiology, 75(1), 7–13. https://doi.org/10.1007/s00421....
 
116.
Widmann, M., Mattioni Maturana, F., Burgstahler, C., Erz, G., Schellhorn, P., Fragasso, A., Schmitt, A., Nieß, A. M., & Munz, B. (2022). MiRNAs as markers for the development of individualized training regimens: a pilot study. Physiological Reports, 10(5), e15217. https://doi.org/10.14814/phy2.....
 
117.
Wiewelhove, T., Fernandez-Fernandez, J., Raeder, C., Kappenstein, J., Meyer, T., Kellmann, M., Pfeiffer, M., & Ferrauti, A. (2016). Acute responses and muscle damage in different high-intensity interval running protocols. Journal of Sports Medicine and Physical Fitness, 56(5), 606–615.
 
118.
Yoshida, T., Udo, M., Iwai, K., & Yamaguchi, T. (1993). Physiological characteristics related to endurance running performance in female distance runners. Journal of Sports Sciences, 11(1), 57–62. https://doi.org/10.1080/026404....
 
119.
Zinner, C., Schäfer Olstad, D., & Sperlich, B. (2018). Mesocycles with different training intensity distribution in recreational runners. Medicine and Science in Sports and Exercise, 50(8), 1641–1648. https://doi.org/10.1249/MSS.00....
 
eISSN:1899-7562
ISSN:1640-5544
Journals System - logo
Scroll to top