SECTION III - SPORTS AND PHYSICAL ACTIVITY / REVIEW
Effectiveness of Individualized Training Programs Based on the Optimal Force-Velocity Relationship to Develop Athletes’ Jump Performance: A Systematic Review with Meta-Analysis
,
 
,
 
,
 
,
 
 
 
More details
Hide details
1
Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.
 
2
Department of Physiotherapy, University of Melbourne, Melbourne, Australia.
 
3
Competitive Sports, Beijing Research Institute of Sports Science, Beijing, China.
 
4
Department of Sports Sciences and Physical Conditioning, Faculty of Education, Catholic University of the Most Holy Conception, Concepción, Chile.
 
5
Department of Radiology, Ningbo No. 2 Hospital, Ningbo, China.
 
6
Faculty of Sports Science, Ningbo University, Ningbo, China.
 
These authors had equal contribution to this work
 
 
Submission date: 2024-08-23
 
 
Final revision date: 2024-12-27
 
 
Acceptance date: 2025-02-17
 
 
Online publication date: 2025-09-23
 
 
Corresponding author
Junbei Bai   

School of Sports Engineering, Beijing sport university, China
 
 
 
KEYWORDS
TOPICS
ABSTRACT
This systematic review with meta-analysis evaluated whether individualized training programs tailored to an athlete’s F-V profile were more effective than non-individualized programs (i.e., without considering the athlete´s F-V profile) in decreasing F-V imbalances and enhancing jump height and maximal power (Pmax). A literature search was conducted in PubMed, Web of Science, EBSCO and Cochrane Library databases from inception until April 19th 2024. Pooled meta-analysis and subgroup meta-analysis were performed using the random-effects and fixed-effects models. The individualized training program was more effective at reducing the F-V imbalance compared to the non-individualized training program (SMD = 0.59 [95%, p < 0.001), but no significant differences were reached for jump height (SMD = 0.50, p = 0.059) and Pmax (SMD = 0.10, p = 0.543). Regarding subgroup analyses, differences were found only between the velocity-deficit subgroup and the non-individualized group with the former showing greater reductions in the F-V imbalance (SMD = 1.28, p < 0.001) and greater improvements in jump height (SMD = 0.77, p = 0.010), but no significant differences were noted for Pmax (SMD = 0.40, p = 0.165). No significant differences in the F-V imbalance, jump height or Pmax were obtained between force-deficit and well-balanced subgroups compared to the non-individualized group. Individualized training programs are more effective at reducing F-V imbalances than non-individualized programs because they target specific segments of the F-V profile. However, pooled evidence suggests that individualized training is only more effective at enhancing jump height for athletes experiencing a velocity-deficit at the start of the training program.
REFERENCES (40)
1.
Alcazar, J., Cornejo-Daza, P. J., Sánchez-Valdepeñas, J., Alegre, L. M., & Pareja-Blanco, F. (2021). Dose-response relationship between velocity loss during resistance training and changes in the squat force–velocity relationship. International Journal of Sports Physiology and Performance, 16(12), 1736–1745. doi: 10.1123/IJSPP.2020-0692.
 
2.
Balsalobre-Fernández, C., Glaister, M., & Lockey, R. A. (2015). The validity and reliability of an iPhone app for measuring vertical jump performance. Journal of Sports Sciences, 33(15), 1574–1579. https://doi.org/10.1080/026404....
 
3.
Barrera-Domínguez, F. J., Almagro, B. J., Sáez de Villarreal, E., & Molina-López, J. (2023). Effect of individualised strength and plyometric training on the physical performance of basketball players. European Journal of Sport Science, 23(12), 2379–2388. doi: 10.1080/17461391.2023.2238690.
 
4.
Bobbert, M. F., Gerritsen, K. G. M., Litjens, M. C. A., & Van Soest, A. J. (1996). Why is countermovement jump height greater than squat jump height? Medicine and Science in Sports and Exercise, 28(11), 1402–1412. doi: 10.1097/00005768-199611000-00009.
 
5.
Cronin, J., & Sleivert, G. (2005). Challenges in understanding the influence of maximal power training on improving athletic performance. Sports Medicine, 35(3), 213–234. doi: 10.2165/00007256-200535030-00003.
 
6.
Escobar Álvarez, J. A., Fuentes García, J. P., Da Conceição, F. A., & Jiménez-Reyes, P. (2020). Individualized Training Based on Force-Velocity Profiling During Jumping in Ballet Dancers. International Journal of Sports Physiology and Performance, 15(6), 788–94. doi: 10.1123/IJSPP.2019-0492.
 
7.
García-Ramos, A., Haff, G. G., Feriche, B., & Jaric, S. (2018). Effects of different conditioning programmes on the performance of high-velocity soccer-related tasks: Systematic review and meta-analysis of controlled trials. International Journal of Sports Science and Coaching, 13(1), 129–151. doi: 10.1177/1747954117711096.
 
8.
García-Ramos, A., Pérez-Castilla, A., & Jaric, S. (2021). Optimisation of applied loads when using the two-point method for assessing the force-velocity relationship during vertical jumps. Sports Biomechanics, 20(3), 274–289. doi: 10.1080/14763141.2018.1545044.
 
9.
Harris, N. K., Cronin, J. B., Hopkins, W. G., & Hansen, K. T. (2008). Relationship between sprint times and the strength/power outputs of a machine squat jump. Journal of Strength and Conditioning Research, 22(3), 691–698. doi: 10.1519/jsc.0b013e31816d8d80.
 
10.
Higgins, J. P. T., Savović, J., Page, M. J., Elbers, R. G., & Sterne, J. A. C. (2019). Assessing risk of bias in a randomized trial. In Cochrane Handbook for Systematic Reviews of Interventions (pp. 205–228). doi: 10.1002/9781119536604.CH8.
 
11.
Van Hooren, B., & Zolotarjova, J. (2017). The difference between countermovement and squat jump performances: A review of underlying mechanisms with practical applications. Journal of Strength and Conditioning Research, 31(7), 2011–2020. doi: 10.1519/JSC.0000000000001913.
 
12.
Janicijevic, D., Knezevic, O. M., Mirkov, D. M., Pérez-Castilla, A., Petrovic, M., Samozino, P., & García-Ramos, A. (2020). The force–velocity relationship obtained during the squat jump exercise is meaningfully influenced by the initial knee angle. Sports Biomechanics, 21(9), 1136–1145. doi: 10.1080/14763141.2020.1727559.
 
13.
Jiménez-Reyes, P., Samozino, P., Brughelli, M., & Morin, J. B. (2017). Effectiveness of an individualized training based on force-velocity profiling during jumping. Frontiers in Physiology, 7, 677. doi: 10.3389/fphys.2016.00677.
 
14.
Jiménez-Reyes, P., Samozino, P., & Morin, J. B. (2019). Optimized training for jumping performance using the force-velocity imbalance: Individual adaptation kinetics. PloS one, 14(5), e0216681. https://doi.org/10.1371/journa....
 
15.
Jukic, I., Pérez Castilla, A., García Ramos, A., Van Hooren, B., McGuigan, M. R., & Helms, E. R. (2022). The acute and chronic effects of implementing velocity loss thresholds during resistance training: A systematic review, meta-analysis, and critical evaluation of the literature. Sports Medicine (Auckland, N.Z.), 53(1), 177–214. https://doi.org/10.1007/s40279....
 
16.
Köklü, Y., Alemdaroğlu, U., Özkan, A., Koz, M., & Ersöz, G. (2015). The relationship between sprint ability, agility, and vertical jump performance in young soccer players. Science & Sports, 30(1), e1–e5. doi: 10.1016/j.scispo.2013.04.006.
 
17.
Kotani, Y., Lake, J., Guppy, S. N., Poon, W., Nosaka, K., Hori, N., & Haff, G. G. (2022). Reliability of the Squat Jump Force-Velocity and Load-Velocity Profiles. Journal of Strength and Conditioning Research, 36(11), 3000–3007. doi:10.1519/JSC.0000000000004057.
 
18.
Kozinc, Ž., Žitnik, J., Smajla, D., & Šarabon, N. (2022). The difference between squat jump and countermovement jump in 770 male and female participants from different sports. European Journal of Sport Science, 22(7), 985–993. doi: 10.1080/17461391.2021.1936654.
 
19.
Li, Z., Zhi, P., Yuan, Z., García-Ramos, A., & King, M. (2024). Feasibility of vertical force-velocity profiles to monitor changes in muscle function following different fatigue protocols. European Journal of Applied Physiology, 124(1), 365–374. https://doi.org/10.1007/s00421....
 
20.
Lindberg, K., Solberg, P., Bjørnsen, T., Helland, C., Rønnestad, B., Frank, M. T., Haugen, T., Østerås, S., Kristoffersen, M., Midttun, M., Sæland, F., & Paulsen, G. (2021). Force-velocity profiling in athletes: Reliability and agreement across methods. PLOS ONE, 16(2), e0245791. doi: 10.1371/Journal.Pone.0245791.
 
21.
Lindberg, K., Solberg, P., Rønnestad, B. R., Frank, M. T., Larsen, T., Abusdal, G., Berntsen, S., Paulsen, G., Sveen, O., Seynnes, O., & Bjørnsen, T. (2021). Should we individualize training based on force-velocity profiling to improve physical performance in athletes? Scandinavian Journal of Medicine & Science in Sports, 31(12), 2198–2210. doi: 10.1111/SMS.14044.
 
22.
Morin, J. B., & Samozino, P. (2016). Interpreting power-force-velocity profiles for individualized and specific training. International Journal of Sports Physiology and Performance, 11(2), 267–272. doi: 10.1123/IJSPP.2015-0638.
 
23.
Nishiumi, D., & Hirose, N. (2024). Increasing Braking and Amortization Forces during the Countermovement Jump Does Not Necessarily Improve Jump Height. Journal of Human Kinetics, 94, 65–75. https://doi.org/10.5114/jhk/19....
 
24.
Okazaki, V. H. A., Rodacki, A. L. F., & Satern, M. N. (2015). A review on the basketball jump shot. Sports Biomechanics, 14(2), 190–205. doi: 10.1080/14763141.2015.1052541.
 
25.
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., Stewart, L. A., Thomas, J., Tricco, A. C., Welch, V. A., Whiting, P., & Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ (Clinical Research Ed.), 372, n71. https://doi.org/10.1136/bmj.n7....
 
26.
Riemann, B. L., Johnson, M. J., Davies, G. J., & Flatt, A. A. (2024). Residual Effects of Same Day Lower Extremity Strength Training on Countermovement Jump Performance in Collegiate Women Athletes. Journal of Human Kinetics, 92, 213–225. https://doi.org/10.5114/jhk/18....
 
27.
Sáez de Villarreal, E., Requena, B., Izquierdo, M., & Gonzalez-Badillo, J. J. (2013). Enhancing sprint and strength performance: Combined versus maximal power, traditional heavy-resistance, and plyometric training. Journal of Science and Medicine in Sport, 16(2), 146–150. doi: 10.1016/J.JSAMS.2012.05.007.
 
28.
Samozino, P., Rejc, E., Di Prampero, P. E., Belli, A., & Morin, J. B. (2012). Optimal force-velocity profile in ballistic movements--altius: citius or fortius?. Medicine and Science in Sports and Exercise, 44(2), 313–322. doi: 10.1249/MSS.0b013e31822d757a.
 
29.
Samozino, P., Edouard, P., Sangnier, S., Brughelli, M., Gimenez, P., & Morin, J. B. (2014a). Force-velocity profile: Imbalance determination and effect on lower limb ballistic performance. International Journal of Sports Medicine, 35(6), 505–510. doi: 10.1055/S-0033-1354382.
 
30.
Samozino, P., Rejc, E., Di Prampero, P. E., Belli, A., & Morin, J. B. (2014b). Force-velocity properties’ contribution to bilateral deficit during ballistic push-off. Medicine and Science in Sports and Exercise, 46(1), 107–114. doi: 10.1249/mss.0b013e3182a124fb.
 
31.
Samozino, P., Rivière, J. R., Jimenez-Reyes, P., Cross, M. R., & Morin, J.-B. (2022). Is the concept, method, or measurement to blame for testing error? An illustration using the force-velocity-power profile. International Journal of Sports Physiology and Performance, 17(12), 1760–1768. doi: 10.1123/ijspp.2021-0535.
 
32.
Simpson, A., Waldron, M., Cushion, E., & Tallent, J. (2021). Optimised force-velocity training during pre-season enhances physical performance in professional rugby league players. Journal of Sports Sciences, 39(1), 91–100. doi: 10.1080/02640414.2020.1805850.
 
33.
Valenzuela, P. L., Sánchez-Martínez, G., Torrontegi, E., Vázquez-Carrión, J., Montalvo, Z., & Haff, G. G. (2021). Should we base training prescription on the force–velocity profile? Exploratory study of its between-day reliability and differences between methods. International Journal of Sports Physiology and Performance, 16(7), 1001–1007. doi: 10.1123/IJSPP.2020-0308.
 
34.
Yingling, V. R., Castro, D. A., Duong, J. T., Malpartida, F. J., Usher, J. R., & Jenny, O. (2018). The reliability of vertical jump tests between the Vertec and My Jump phone application. PeerJ, 2018(4), e4669. doi: 10.7717/peerj.4669/supp-1.
 
35.
Zabaloy, S., Pareja-Blanco, F., Giráldez, J. C., Rasmussen, J. I., & Gálvez González, J. (2020). Effects of individualised training programmes based on the force-velocity imbalance on physical performance in rugby players. Isokinetics and Exercise Science, 28(2), 181–190. doi: 10.3233/IES-192196.
 
36.
Zabaloy, S., Healy, R., Pereira, L. A., Tondelli, E., Tomaghelli, L., Aparicio, J. ... & Loturco, I. (2025). A Randomized Controlled Trial of Unresisted vs. Heavy Resisted Sprint Training Programs: Effects on Strength, Jump, Unresisted and Resisted Sprint Performance in Youth Rugby Union Players. Journal of Human Kinetics, 95, 199–214. https://doi.org/10.5114/jhk/20....
 
37.
Zhang, Q., Gassier, R., Eymard, N., Pommel, F., Berthier, P., Rahmani, A., & Hautier, C. A. (2025). Predicting Throwing Performance with Force-Velocity Mechanical Properties of the Upper Limb in Experienced Handball Players. Journal of Human Kinetics, 95, 43–53. https://doi.org/10.5114/jhk/19....
 
38.
Zhang, X., Feng, S., Li, H., Brito, J. P., Oliveira, R., Zhang, X., Feng, S., & Li, H. (2023). The effect of velocity loss on strength development and related training efficiency: A dose–response meta–analysis. Healthcare, 11(3), 337. doi: 10.3390/healthcare11030337.
 
39.
Zhao, Z., Yin, Z., Wang, S., Wang, J., Bai, B., Qiu, Z., & Zhao, Q. (2016). Meta-analysis: The diagnostic efficacy of chromoendoscopy for early gastric cancer and premalignant gastric lesions. Journal of Gastroenterology and Hepatology, 31(9), 1539–45. doi: 10.1111/jgh.13313.
 
40.
Ziv, G., & Lidor, R. (2010). Vertical jump in female and male basketball players—a review of observational and experimental studies. Journal of Science and Medicine in Sport, 13(3), 332–39. doi: 10.1016/j.jsams.2009.02.009.
 
eISSN:1899-7562
ISSN:1640-5544
Journals System - logo
Scroll to top