SECTION I - KINESIOLOGY / RESEARCH PAPER
Foot Pronation Prediction with Inertial Sensors during Running: A Preliminary Application of Data-Driven Approaches
,
 
,
 
Alan Wang 2,3
,
 
,
 
,
 
 
 
 
More details
Hide details
1
Faculty of Sports Science, Ningbo University, Ningbo, China.
2
Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
3
Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
4
Faculty of Engineering, University of Pannonia, Veszprém, Hungary.
5
Department of Engineering Science, Faculty of Engineering, The University of Auckland, Auckland, New Zealand.
CORRESPONDING AUTHOR
Yaodong Gu   

Faculty of Sports Science, Ningbo University, No.818 Fenghua Road, Ningbo, 315211, China
Submission date: 2022-12-21
Final revision date: 2023-02-14
Acceptance date: 2023-04-04
Online publication date: 2023-05-11
 
 
KEYWORDS
TOPICS
ABSTRACT
Abnormal foot postures may affect foot movement and joint loading during locomotion. Investigating foot posture alternation during running could contribute to injury prevention and foot mechanism study. This study aimed to develop feature-based and deep learning algorithms to predict foot pronation during prolonged running. Thirty-two recreational runners have been recruited for this study. Nine-axial inertial sensors were attached to the right dorsum of the foot and the vertical axis of the distal anteromedial tibia. This study employed feature-based machine learning algorithms, including support vector machine (SVM), extreme gradient boosting (XGBoost), random forest, and deep learning, i.e., one-dimensional convolutional neural networks (CNN1D), to predict foot pronation. A custom nested k-fold cross-validation was designed for hyper-parameter tuning and validating the model’s performance. The XGBoot classifier achieved the best accuracy using acceleration and angular velocity data from the foot dorsum as input. Accuracy and the area under curve (AUC) were 74.7 ± 5.2% and 0.82 ± 0.07 for the subject-independent model and 98 ± 0.4% and 0.99 ± 0 for the record-wise method. The test accuracy of the CNN1D model with sensor data at the foot dorsum was 74 ± 3.8% for the subject-wise approach with an AUC of 0.8 ± 0.05. This study found that these algorithms, specifically for the CNN1D and XGBoost model with inertial sensor data collected from the foot dorsum, could be implemented into wearable devices, such as a smartwatch, for monitoring a runner’s foot pronation during long-distance running. It has the potential for running shoe matching and reducing or preventing foot posture-induced injuries.
 
REFERENCES (32)
1.
Ahamed, N. U., Kobsar, D., Benson, L. C., Clermont, C. A., Osis, S. T., & Ferber, R. (2019). Subject-specific and group-based running pattern classification using a single wearable sensor. Journal of Biomechanics, 84, 227–233. https://doi.org/10.1016/j.jbio....
 
2.
Barandas, M., Folgado, D., Fernandes, L., Santos, S., Abreu, M., Bota, P., Liu, H., Schultz, T., & Gamboa, H. (2020). TSFEL: Time series feature extraction library. SoftwareX, 11, 100456. https://doi.org/10.1016/j.soft.... 2020.100456.
 
3.
Behling, A. V., Manz, S., von Tscharner, V., & Nigg, B. M. (2020). Pronation or foot movement — What is important. Journal of Science and Medicine in Sport, 23(4), 366–371. https://doi.org/10.1016/j.jsam.... 11.002.
 
4.
Clermont, C. A., Benson, L. C., Osis, S. T., Kobsar, D., & Ferber, R. (2019). Running patterns for male and female competitive and recreational runners based on accelerometer data. Journal of Sports Sciences, 37(2), 204–211. https://doi.org/10.1080/026404....
 
5.
Dempster, J., Dutheil, F., & Ugbolue, U. C. (2021). The Prevalence of Lower Extremity Injuries in Running and Associated Risk Factors: A Systematic Review. Physical Activity and Health, 5(1), 133–145. http://doi.org/10.5334/paah.10....
 
6.
Dixon, P. C., Schütte, K. H., Vanwanseele, B., Jacobs, J. V., Dennerlein, J. T., Schiffman, J. M., Fournier, P. A., & Hu, B. (2019). Machine learning algorithms can classify outdoor terrain types during running using accelerometry data. Gait and Posture, 74, 176–181. https://doi.org/10.1016/j.gait....
 
7.
Dorschky, E., Nitschke, M., Martindale, C. F., van den Bogert, A. J., Koelewijn, A. D., & Eskofier, B. M. (2020). CNN-based estimation of sagittal plane walking and running biomechanics from measured and simulated inertial sensor data. Frontiers in Bioengineering and Biotechnology, 8, 604. https://doi.org/10.3389/fbioe. 2020.00604.
 
8.
Dos Santos, J. O. L., Gomes, A. L. R., Lima, A. B., de Paiva Vieira, E., Bezerra, E. de S., & Rossato, M. (2019). Effect of linear running velocity on the increase on foot pronation. Foot, 41, 74–78. https://doi.org/10.1016/j. foot.2019.09.004.
 
9.
Halilaj, E., Rajagopal, A., Fiterau, M., Hicks, J. L., Hastie, T. J., & Delp, S. L. (2018). Machine learning in human movement biomechanics: Best practices, common pitfalls, and new opportunities. Journal of Biomechanics, 81, 1–11. https://doi.org/10.1016/j.jbio....
 
10.
Hernandez, V., Dadkhah, D., Babakeshizadeh, V., & Kulić, D. (2021). Lower body kinematics estimation from wearable sensors for walking and running: A deep learning approach. Gait and Posture, 83, 185–193. https://doi.org/10.1016/j.gait....
 
11.
Hu, B., Dixon, P. C., Jacobs, J. V., Dennerlein, J. T., & Schiffman, J. M. (2018). Machine learning algorithms based on signals from a single wearable inertial sensor can detect surface- and age-related differences in walking. Journal of Biomechanics, 71, 37–42. https://doi.org/10.1016/j.jbio....
 
12.
Kettaneh, N., Berglund, A., & Wold, S. (2005). PCA and PLS with very large data sets. Computational Statistics & Data Analysis, 48(1), 69–85. https://doi.org/10.1016/j.csda....
 
13.
Kobsar, D., Osis, S. T., Hettinga, B. A., & Ferber, R. (2014). Classification accuracy of a single tri-axial accelerometer for training background and experience level in runners. Journal of Biomechanics, 47(10), 2508–2511. https://doi.org/10.1016/j.jbio....
 
14.
Liu, Q., Mo, S., Cheung, V. C. K., Cheung, B. M. F., Wang, S., Chan, P. P. K., Malhotra, A., Cheung, R. T. H., & Chan, R. H. M. (2020). Classification of runners’ performance levels with concurrent prediction of biomechanical parameters using data from inertial measurement units. Journal of Biomechanics, 112, 110072. https://doi.org/10.1016/j.jbio....
 
15.
Malisoux, L., Chambon, N., Delattre, N., Gueguen, N., Urhausen, A., & Theisen, D. (2016). Injury risk in runners using standard or motion control shoes: A randomised controlled trial with participant and assessor blinding. British Journal of Sports Medicine, 50(8), 481–487. https://doi.org/10.1136/bjspor....
 
16.
Mei, Q., Gu, Y., Xiang, L., Baker, J. S., & Fernandez, J. (2019). Foot pronation contributes to altered lower extremity loading after long distance running. Frontiers in Physiology, 10, 573. https://doi.org/10.3389/fphys. 2019.00573.
 
17.
Neal, B. S., Griffiths, I. B., Dowling, G. J., Murley, G. S., Munteanu, S. E., Franettovich Smith, M. M., Collins, N. J., & Barton, C. J. (2015). Foot posture as a risk factor for lower limb overuse injury: A systematic review and meta-analysis. Journal of Foot and Ankle Research, 7, 55. https://doi.org/10.1186/s13047....
 
18.
Ngoh, K. J.-H., Gouwanda, D., Gopalai, A. A., & Zheng, C. Y. (2018). Estimation of vertical ground reaction force during running using neural network model and uniaxial accelerometer. Journal of Biomechanics, 76, 269–273. https://doi.org/10.1016/j.jbio....
 
19.
Nigg, B., Behling, A., & Hamill, J. (2019). Foot pronation. Footwear Science, 11(3), 131–134. https://doi.org/10. 1080/19424280.2019.1673489.
 
20.
Nigg, B. M., Baltich, J., Hoerzer, S., & Enders, H. (2015). Running shoes and running injuries: mythbusting and a proposal for two new paradigms:‘preferred movement path’and ‘comfort filter.’ British Journal of Sports Medicine, 49(20), 1290–1294.
 
21.
Ordóñez, F. J., & Roggen, D. (2016). Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors, 16, 115. https://doi.org/10.3390/s16010....
 
22.
Pan, J. W., Ho, M. Y. M., Loh, R. B. C., Iskandar, M. N. S., & Kong, P. W. (2023). Foot Morphology and Running Gait Pattern between the Left and Right Limbs in Recreational Runners. Physical Activity and Health, 7(1), 43–52. http://doi.org/10.5334/paah.22....
 
23.
Redmond, A. C., Crane, Y. Z., & Menz, H. B. (2008). Normative values for the Foot Posture Index. Journal of Foot and Ankle Research, 1(1), 6. https://doi.org/10.1186/1757-1....
 
24.
Redmond, A. C., Crosbie, J., & Ouvrier, R. A. (2006). Development and validation of a novel rating system for scoring standing foot posture: The Foot Posture Index. Clinical Biomechanics, 21(1), 89–98. https://doi.org/ 10.1016/j.clinbiomech.2005.08.002.
 
25.
Ryan, M., Elashi, M., Newsham-West, R., & Taunton, J. (2014). Examining injury risk and pain perception in runners using minimalist footwear. British Journal of Sports Medicine, 48(16), 1257–1262. https://doi.org/10. 1136/bjsports-2012-092061.
 
26.
Saragiotto, B. T., Yamato, T. P., Hespanhol Junior, L. C., Rainbow, M. J., Davis, I. S., & Lopes, A. D. (2014). What are the main risk factors for running-related injuries? Sports Medicine, 44(8), 1153–1163. https://doi. org/10.1007/s40279-014-0194-6.
 
27.
Tan, T., Strout, Z. A., & Shull, P. B. (2020). Accurate impact loading rate estimation during running via a subject-independent convolutional neural network model and optimal IMU placement. IEEE Journal of Biomedical and Health Informatics, 25(4), 1215–1222. https://doi.org/10.1109/jbhi.2....
 
28.
Um, T. T., Pfister, F. M. J., Pichler, D., Endo, S., Lang, M., Hirche, S., Fietzek, U., & Kulić, D. (2017). Data augmentation of wearable sensor data for parkinson’s disease monitoring using convolutional neural networks. Proceedings of the 19th ACM International Conference on Multimodal Interaction, 216–220.
 
29.
Xiang, L., Mei, Q., Fernandez, J., & Gu, Y. (2018). Minimalist shoes running intervention can alter the plantar loading distribution and deformation of hallux valgus: A pilot study. Gait and Posture, 65, 65–71. https://doi. org/10.1016/j.gaitpost.2018.07.002.
 
30.
Xiang, L., Wang, A., Gu, Y., Zhao, L., Shim, V., & Fernandez, J. (2022a). Recent machine learning progress in lower limb running biomechanics with wearable technology: A systematic review. Frontiers in Neurorobotics, 16, 913052. https://doi.org/10.3389/fnbot.....
 
31.
Xiang, L., Mei, Q., Wang, A., Shim, V., Fernandez, J., & Gu, Y. (2022b). Evaluating function in the hallux valgus foot following a 12-week minimalist footwear intervention: A pilot computational analysis. Journal of Biomechanics, 132, 110941. https://doi.org/10.1016/j.jbio....
 
32.
Zrenner, M., Gradl, S., Jensen, U., Ullrich, M., & Eskofier, B. M. (2018). Comparison of different algorithms for calculating velocity and stride length in running using inertial measurement units. Sensors, 18(12), 4194. https://doi.org/10.3390/s18124....
 
eISSN:1899-7562
ISSN:1640-5544