SECTION II - EXERCISE PHYSIOLOGY AND SPORTS MEDICINE / RESEARCH PAPER
Effects of Elastic Bands, Kaatsu Cuffs, and Clinical Cuffs
on the Brachial Blood Flow during Elbow Flexion Exercise
More details
Hide details
1
Blood Flow Restriction and Exercise Research Group, São Judas University, São Paulo, Brazil.
2
Hospital Israelita Albert Einstein, São Paulo, Brazil.
Submission date: 2024-01-29
Final revision date: 2024-05-16
Acceptance date: 2024-09-18
Online publication date: 2024-12-19
Corresponding author
Rodrigo Volga Fernandes
Department of Movement Science, São Judas Tadeu University, Taquari, 03166-000, São Paulo, Brazil
KEYWORDS
TOPICS
ABSTRACT
The elastic band (EB) may be an alternative for restricting the blood flow compared to the Kaatsu and clinical cuffs (KA and CC, respectively). However, the impact of the EB, the KA, and the CC on the blood flow during exercise remains uncertain. This study examined the blood flow (BF), the diameter of the brachial artery (DA), and blood flow velocity (BFV) during elbow flexion exercises using the KA, the CC, and the EB. Twenty-six resistance-trained men (age: 30.7 ± 8.7 years, body mass: 80.7 ± 15.5 kg, body height: 175.7 ± 6.5 cm) completed four sets of 15 repetitions of unilateral elbow flexion exercise at 20% 1RM. All protocols were set to the same perceived tightness (PT) based on Kaatsu optimal pressure (KOP). The BF, BFV and the DA were assessed at baseline, at KOP, and during the exercise sets. The BF and BFV were significantly reduced from baseline to KOP when the KA (67%, ES: 1.4, p = 0.0002; 24%, ES: 1.9, p < 0.0001) and the CC (70%, ES: 1.7, p < 0.0001; 31%, ES: 1.6, p < 0.0001) were applied, yet not the EB (49%, ES: 1.1, p = 0.103; 17%, ES: 0.7, p = 0.123). The BF and BFV increased from KOP to the fourth exercise set in all protocols with the KA (409%, ES: 2.4, p < 0.0001; 37.5 %, ES: 1.7, p = 0.007), the CC (377%, ES: 2.0, p < 0.0001; 55%, ES: 1.3, p < 0.0001) and the EB (411%, ES: 2.9, p < 0.0001; 43%, ES: 1.3, p = 0.002), respectively, with no significant difference between them (p > 0.05). The DA remained unchanged after all protocols (p > 0.05). In conclusion, the EB showed similar blood flow behavior compared to pressure-controlled cuffs.
REFERENCES (39)
1.
Abe, T., Sakamaki, M., Fujita, S., Ozaki, H., Sugaya, M., Sato, Y., & Nakajima, T. (2010). Effects of low-intensity walk training with restricted leg blood flow on muscle strength and aerobic capacity in older adults. Journal of Geriatric Physical Therapy, 33(1), 34–40.
2.
Abe, T., Mouser, J. G., Dankel, S. J., Bell, Z. W., Buckner, S. L., Mattocks, K. T., Jessee, M. B., & Loenneke, J. P. (2019). A method to standardize the blood flow restriction pressure by an elastic cuff. Scandinavian Journal of Medicine & Science in Sports, 29(3), 329–335.
https://doi.org/10.1111/sms.13....
3.
Bell, Z. W., Dankel, S. J., Mattocks, K. T., Buckner, S. L., Jessee, M. B., Mouser, J. G., Abe, T., & Loenneke, J.P. (2018). An investigation into setting the blood flow restriction pressure based on perception of tightness. Physical Measurement, 39(10), 105006.
https://doi.org/10.1088/1361-6....
4.
Bell, Z. W., Dankel, S. J., Spitz, R. W., Chatakondi, R. N., Abe, T., & Loenneke, J. P. (2019). The Perceived Tightness Scale Does Not Provide Reliable Estimates of Blood Flow Restriction Pressure. Journal of Sport Rehabilitation, 29(4), 516–518.
https://doi.org/10.1123/jsr.20....
5.
Bichowska-Paweska M, Gawel D, Trybulski R, Jarosz J, Losinska K, Fostiak K, & Vieira JG. The effect of a single cycle of ischemia on bar velocity during bench press exercise. Balt J Health Phys Act. 2024;16(1): Article10.
https://doi.org/10.29359/BJHPA....
6.
Brown, L. E & Weir, J. J. (2001). ASEP procedures recommendation I: Accurate assessment of muscular strength and power. Journal of Exercise Physiology - Online, 4(3), 1–21.
7.
Behringer, M., Behlau, D., Montag, J. C. K., McCourt, M. L., Mester, J. (2017) Low-Intensity Sprint Training With Blood Flow Restriction Improves 100-m Dash. Journal of Strength and Conditioning Research., 31(9), 2462–2472. doi: 10.1519/JSC.0000000000001746.
8.
Bjørnsen, T., Wernbom, M., Kirketeig, A., Paulsen, G., Samnøy, L., Bækken, L., Cameron-Smith, D., Berntsen, S., Raastad, T. (2019). Type 1 Muscle Fiber Hypertrophy after Blood Flow-restricted Training in Powerlifters. Medicine and Science in Sports and Exercise, 51(2), 288–298. doi: 10.1249/MSS.0000000000001775.
9.
Buckner, S. L., Dankel, S. J., Counts, B. R., Jessee, M. B., Mouser, J. G., Mattocks, K. T., Laurentino, G. C., Abe, T., & Loenneke, J. P. (2017). Influence of cuff material on blood flow restriction stimulus in the upper body. Journal of Physiological Sciences: JPS, 67(1), 207–215.
https://doi.org/10.1007/s12576....
10.
Centner, C., Wiegel, P., Gollhofer, A., & König, D. (2019). Effects of blood flow restriction training on muscular strength and hypertrophy in older individuals: A systematic review and meta-analysis. Sports Medicine (Auckland, N.Z.), 49(1), 95–108.
https://doi.org/10.1007/s40279....
11.
De Oliveira, G. T., Souza, H. L. R., Prazeres, E. O., Bernardes, B. P., Patterson, S. D., Arriel, R. A., Camilo, G. B., Hohl, R., Meireles, A., & Marocolo, M. (2024). A Practical Approach for Ischemic Preconditioning Intervention in Sports: A Pilot Study for Cuff Thigh Occlusion Pressure Estimation Based on Systolic Blood Pressure. Journal of Human Kinetics, 91(Spec Issue), 157–164.
https://doi.org/10.5114/jhk/18....
12.
Duarte de Oliveira, J. L., Vieira, J. G., Sabino de Queiros, V., Mourão Júnior, C. A., Panza, P. S., Krzysztofik, M., Bichowska, M., Guilherme de Araújo Tinôco Cabral, B., Rolnick, N., Wilk, M., Vianna, J. M. (2023). Cardiovascular and Perceptual Responses to Resistance Training with Practical Blood Flow Restriction Induced by a Non-Elastic Band vs. Pneumatic Cuff: A Crossover Randomized Study. Perceptual Motor Skills, 130(3), 1152–1167. doi: 10.1177/00315125231162732.
13.
Ellefsen, S., Hammarström, D., Strand, T. A., Zacharoff, E., Whist, J. E., Rauk, I., Nygaard, H., Vegge, G., Hanestadhaugen, M., Wernbom, M., Cumming, K., Ronning, R., Raastad, T., & Ronnestad, B. R. (2015). Blood flow-restricted strength training displays high functional and biological efficacy in women: a within-subject comparison with high-load strength training. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 309(7), R767–R779.
https://doi.org/10.1152/ajpreg....
14.
Fry, C. S., Glynn, E. L., Drummond, M. J., Timmerman, K. L., Fujita, S., Abe, T., Dhanani, S., Volpi, E., & Rasmussen, B. B. (2010). Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men. Journal of Applied Physiology (Bethesda, Md.: 1985), 108(5), 1199–1209.
https://doi.org/10.1152/japplp....
15.
Fujita, S., Abe, T., Drummond, M. J., Cadenas, J. G., Dreyer, H. C., Sato, Y., Volpi, E., & Rasmussen, B. B. (2007). Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. Journal of Applied Physiology (Bethesda, Md.: 1985), 103(3), 903–910.
https://doi.org/10.1152/japplp....
16.
Kubota, A., Sakuraba, K., Sawaki, K., Sumide, T., & Tamura, Y. (2008). Prevention of disuse muscular weakness by restriction of blood flow. Medicine and Sciences in Sports and Exercise, 40(3), 529–534.
https://doi.org/10.1249/MSS.0b....
17.
Laurentino, G. C., Loenneke, J. P., Teixeira, E. L., Nakajima, E., Iared, W., & Tricoli, V. (2016). The Effect of cuff width on muscle adaptations after blood flow restriction training. Medicine and Sciences in Sports and Exercise, 48(5), 920–925.
https://doi.org/10.1249/MSS.00....
18.
Lixandrão, M. E., Ugrinowitsch, C., Berton, R., Vechin, F. C., Conceição, M. S., Damas, F., Libardi, C. A., & Roschel, H. (2018). Magnitude of muscle strength and mass adaptations between high-load resistance training versus low-load resistance training associated with blood-flow restriction: a systematic review and meta-analysis. Sports Medicine (Auckland, N.Z.), 48(2), 361–378.
https://doi.org/10.1007/s40279....
19.
Loenneke, J. P. & Pujol, T. J. (2009). The Use of Occlusion Training to Produce Muscle Hypertrophy. Strength and Conditioning Journal, 31(3), 77–84. doi: 10.1519/SSC.0b013e3181a5a352.
20.
Loenneke, J. P., Kearney, M. L., Thrower, A. D., Collins, S. & Pujol, T. J. (2010). The acute response of practical occlusion in the knee extensors. Journal of Strength and Conditioning Research, 24(10), 2831–2834. doi: 10.1519/JSC.0b013e3181f0ac3a.
21.
Loenneke, J. P., Wilson, J. M., Balapur, A., Thrower, A. D., Barnes, J. T., & Pujol, T. J. (2012). Time under tension decreased with blood flow-restricted exercise. Clinical Physiology and Functional Imaging, 32(4), 268–273. doi: 10.1111/j.1475-097X.2012.01121.x.
22.
Loenneke, J. P., Kim, D., Fahs, C. A., Thiebaud, R. S., Abe, T., Larson, R. D., Bemben, D. A., & Bemben, M. G. (2015). Effects of exercise with and without different degrees of blood flow restriction on torque and muscle activation. Muscle Nerve, 51(5), 713–21. doi: 10.1002/mus.24448.
23.
Lowery, R. P., Joy, J. M., Loenneke, J. P., de Souza, E. O., Machado, M., Dudeck, J. E., & Wilson, J. M. (2014). Practical blood flow restriction training increases muscle hypertrophy during a periodized resistance training programme. Clinical Physiology and Functional Imaging, 34(4), 317–321.
https://doi.org/10.1111/cpf.12....
24.
Luebbers, P. E., Witte, E. V., Oshel, J. Q., & Butler, M. S. (2019). Effects of Practical Blood Flow Restriction Training on Adolescent Lower-Body. Journal of Strength and Conditioning Research, 33(10), 2674–2683. doi: 10.1519/JSC.0000000000002302.
25.
Mouser, J. G., Laurentino, G. C., Dankel, S. J., Buckner, S. L., Jessee, M. B., Counts, B. R., Mattocks, K. T, & Loenneke, J. P. (2017a). Blood flow in humans following low-load exercise with and without blood flow restriction. Applied Physiology Nutrition and Metabolism, 42(11), 1165–1171.
https://doi.org/10.1139/apnm-2....
26.
Mouser, J. G., Ade, C. J., Black, C. D., Bemben, D. A., & Bemben, M. G. (2017b). Brachial blood flow under relative levels of blood flow restriction is decreased in a nonlinear fashion. Clinical Physiology and Functional Imaging, 38(3), 425–430.
https://doi.org/10.1111/cpf.12....
27.
Patterson, S. D., Hughes, L., Warmington, S., Burr, J., Scott, B. R., Owens, J., Abe, T., Nielsen, J. L., Libardi, C. A., Laurentino, G., Neto, G. R., Brandner, C., Martin-Hernandez, J. & Loenneke, J. P. (2019). Blood.
29.
Sato, Y. (2005). The History and Future of Kaatsu training. International Journal of KAATSU Training Research, 1, 1–5.
30.
Slysz, J. T., Petrick, H. L., Marrow, J. P., & Burr, J. F. (2020). An examination of individual responses to ischemic preconditioning and the effect of repeated ischemic preconditioning on cycling performance. European Journal of Sport Science, 20(5), 633–640.
https://doi.org/10.1080/174613....
31.
Suga, T., Okita, K., Takada, S., Omokawa, M., Kadoguchi, T., Yokota, T., Hirabayashi, K., Takahashi, M., Morita, N., Horiuchi, M., Kinugawa, S., & Tsutsui, H. (2012). Effect of multiple set on intramuscular metabolic stress during low-intensity resistance exercise with blood flow restriction. European Journal of Applied Physiology, 112(11), 3915–3920. doi: 10.1007/s00421-012-2377-x.
32.
Takano, H., Morita, T., Iida, H., Asada, K., Kato, M., Uno, K., Hirose, K., Matsumoto, A., Takenaka, K., hirata, Y., Eto, F., Nagai, R., Sato, Y., & Nakajima, T. (2005). Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. European Journal of Applied Physiology, 95(1), 65–73.
https://doi.org/10.1007/s00421....
33.
Takarada, Y., Takazawa, H., Sato, Y., Takebayashi, S., Tanaka, Y., & Ishii, N. (2000). Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. Journal of Applied Physiology (Bethesda, Md.: 1985), 88(6), 2097–2106.
https://doi.org/10.1152/jappl.....
34.
Thijssen, D. H., Black, M. A., Pyke, K. E., Padilla, J., Atkinson, G., Harris, R. A., Parker, B., Wildlansky, M. E., Tschakovsky, M. E., & Green, D. J. (2011). Assessment of flow-mediated dilation in humans: a methodological and physiological guideline. American Journal of Physiology, Heart and Circulatory Physiology, 300(1), H2–H12.
https://doi.org/10.1152/ajphea....
35.
Volga Fernandes, R., Tricoli, V., Garcia Soares, A., Haruka Miyabara, E., Saldanha Aoki, M., & Laurentino, G. (2022). Low-Load Resistance Exercise with Blood Flow Restriction Increases Hypoxia-Induced Angiogenic Genes Expression. Journal of Human Kinetics, 84, 82–91.
https://doi.org/10.2478/hukin-....
36.
Weatherholt, A. M., Vanwye, W. R., Lohmann, J., & Owens, J. G. (2019). The Effect of Cuff Width for Determining Limb Occlusion Pressure: A Comparison of Blood Flow Restriction Devices. International Journal of Exercise Science, 12(3), 136–143.
37.
Wilson, J. M., Lowery, R. P., Joy, J. M., Loenneke, J. P., & Naimo, M. A. (2013). Practical blood flow restriction training increases acute determinants of hypertrophy without increasing indices of muscle damage. Journal of Strength and Conditioning Research, 27(11), 3068–3075.
https://doi.org/10.1519/JSC.0b....
38.
Xiaolin, W., Xin-Min, Q., Shuyu, J., & Delong, D. (2023). Effects of Resistance Training with Blood Flow Restriction on Explosive Power of Lower Limbs: A Systematic Review and Meta-Analysis. Journal of Human Kinetics, 89, 259–268.
https://doi.org/10.5114/jhk/16....
39.
Yamanaka, T., Farley, R. S., Caputo, J. L. (2012). Occlusion training increases muscular strength in division IA football players. Journal of Strength Conditioning Research, 26(9), 2523–9. doi: 10.1519/JSC.0b013e31823f2b0e.