SECTION I - KINESIOLOGY / REVIEW
Concurrent-Validity and Reliability of Photocells in Sport: A Systematic Review
 
More details
Hide details
1
Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas – UPC, Lima, Perú.
 
2
Department of Physical Education and Sport, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.
 
3
Faculty of Health Sciences, Isabel I University, Burgos, Spain.
 
4
BIOVETMED & SPORTSCI Research group, Faculty of Sports Sciences, University of Murcia, San Javier, Spain.
 
5
Faculty of Sports Sciences, University of Murcia, San Javier, Spain.
 
6
Department of Didactics of Musical, Plastic and Corporal Expression, University of the Basque Country UPV/EHU, Leioa, Spain.
 
7
Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal.
 
8
Department of Biomechanics and Sport Engineering, Gdansk University of Physical Education and Sport, Gdansk, Poland.
 
9
School of Rehabilitation Therapies, Faculty of Medical Technology, Federico Villarreal National University, Lima, Peru.
 
 
Submission date: 2023-01-17
 
 
Final revision date: 2023-05-28
 
 
Acceptance date: 2023-10-18
 
 
Online publication date: 2023-11-28
 
 
Corresponding author
Alejandro Soler-López   

Faculty of Sports Sciences, University of Murcia, 30720 San Javier, Spain., University of Murcia, C. Argentina, 19, 30720 San Javier, Murcia, 30720, Murcia, Spain
 
 
Journal of Human Kinetics 2024;92:53-71
 
KEYWORDS
TOPICS
ABSTRACT
Specific physical qualities such as sprint running, change-of-direction or jump height are determinants of sports performance. Photocell systems are practical and easy to use systems to assess the time from point A to point B. In addition, these photoelectric systems are also used to obtain the time of vertically displaced movements. Knowing the accuracy and precision of photocell timing can be a determinant of ensuring a higher quality interpretation of results and of selecting the most appropriate devices for specific objectives. This systematic review aimed to identify and summarize studies that have examined the validity and reliability of photocells in sport sciences. A systematic review of PubMed, SPORTDiscus, and Web of Science databases was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. From the 164 studies initially identified, 16 were fully reviewed, and their outcome measures were extracted and analyzed. Photocells appear to have a strong agreement with force plates (gold standard), but are not interchangeable to measure the vertical jump. For monitoring horizontal displacement, double beam systems, compared to single beam systems, are more valid and reliable when it comes to avoiding false triggers caused by swinging arms or legs.
 
REFERENCES (36)
1.
Altmann, S., Ringhof, S., Becker, B., Woll, A., & Neumann, R. (2018a). Error-correction processing in timing lights for measuring sprint performance: Does it work?. International Journal of Sports Physiology and Performance, 13(10), 1400–1402. https://doi.org/10.1123/ijspp.....
 
2.
Altmann, S., Spielmann, M., Engel, F. A., Neumann, R., Ringhof, S., Oriwol, D., & Haertel, S. (2018b). Validity of Single-Beam Timing Lights at Different Heights. Journal of Strength and Conditioning Research, 31(7), 1994–1999. https://doi.org/10.1519/JSC.00....
 
3.
Atkinson, G., & Nevill, A. M. (1998). Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Medicine (Auckland, N.Z.), 26(4), 217–238. https://doi.org/10.2165/000072....
 
4.
Attia, A., Dhahbi, W., Chaouachi, A., Padulo, J., Wong, D., & Chamari, K. (2017). Measurement errors when estimating the vertical jump height with flight time using photocell devices: The example of Optojump. Biology of Sport, 1, 63–70. https://doi.org/10.5114/biolsp....
 
5.
Bastida Castillo, A., Gómez Carmona, C. D., Pino Ortega, J., & de La Cruz Sánchez, E. (2017). Validity of an inertial system to measure sprint time and sport task time: A proposal for the integration of photocells in an inertial system. International Journal of Performance Analysis in Sport, 17(4), 600–608. https://doi.org/10.1080/247486....
 
6.
Bataller-Cervero, A. V., Gutierrez, H., DeRentería, J., Piedrafita, E., Marcén, N., Valero-Campo, C., Lapuente, M., & Berzosa, C. (2019). Validity and Reliability of a 10 Hz GPS for Assessing Variable and Mean Running Speed. Journal of Human Kinetics, 67, 17–24.
 
7.
Bond, C. W. ., Willaert, E. M., & Noonan, B. C. (2017). Comparison of Three Timing Systems: Reliability and Best Practice Recommendations in Timing Short-Duration Sprints. Journal of Strength and Conditioning Research, 31, 1062–1071.
 
8.
Bond, C. W., Willaert, E. M., Rudningen, K. E., & Noonan, B. C. (2017b). Reliability of Three Timing Systems Used to Time Short on Ice-Skating Sprints in Ice Hockey Players. Journal of Strength and Conditioning Research, 31(12), 3279–3286. https://doi.org/10.1519/JSC.00....
 
9.
Cronin, J. B., & Templeton, R. L. (2008). Timing Light Height Affects Sprint Times. Journal of Strength and Conditioning Research, 22(1), 318–320. https://doi.org/10.1519/JSC.0b....
 
10.
Doma, K., Connor, J. D., Nakamura, F. Y., & Leicht, A. S. (2023). Intra-Session Reliability of Sprint Performance on a Non-Motorised Treadmill for Healthy Active Males and Females. Journal of Human Kinetics, 87, 163–171. https://doi.org/10.5114/jhk/16....
 
11.
Enoksen, E., Tønnessen, E., & Shalfawi, S. (2009). Validity and reliability of the Newtest Powertimer 300-series® testing system. Journal of Sports Sciences, 27(1), 77–84. https://doi.org/10.1080/026404....
 
12.
Faude, O., Koch, T., & Meyer, T. (2012). Straight sprinting is the most frequent action in goal situations in professional football. Journal of Sports Sciences, 30(7), 625–631. https://doi.org/10.1080/026404....
 
13.
García-López, J., Morante, J. C., Ogueta-Alday, A. C., González-Lázaro, J., Rodríguez-Marroyo, J. A., & Villa, G. (2012). The use of single and double beam photocells for speed measurement in racing: DSD Laser.
 
14.
System ®. RICYDE: Revista Internacional de Ciencias del Deporte, 8(30), 324–333. https://doi.org/10.5232/ricyde....
 
15.
García-López, J., Morante, J. C., Ogueta-Alday, A., & Rodríguez-Marroyo, J. A. (2013). The type of mat (Contact vs. Photocell) affects vertical jump height estimated from flight time. Journal of Strength and Conditioning Research, 27(4), 1162–1167. https://doi.org/10.1519/JSC.0b....
 
16.
Glatthorn, J. F., Gouge, S., Nussbaumer, S., Stauffacher, S., Impellizzeri, F. M., & Maffiuletti, N. A. (2011). Validity and Reliability of Optojump Photoelectric Cells for Estimating Vertical Jump Height. Journal of Strength and Conditioning Research, 25(2), 556–560. https://doi.org/10.1519/JSC.0b....
 
17.
Hanley, B., & Tucker, C. B. (2019). Reliability of the Optojump next system for measuring temporal values in elite racewalking. Journal of Strength and Conditioning Research, 33(12), 3438–3443. https://doi.org/10.1519/jsc.00....
 
18.
Haugen, T. A., Tønnessen, E., Hisdal, J., & Seiler, S. (2014a). The role and development of sprinting speed in soccer. International Journal of Sports Physiology and Performance, 9(3), 432–441. https://doi.org/10.1123/IJSPP.....
 
19.
Haugen, T. A., Tønnessen, E., & Seiler, S. K. (2012). The Difference Is in the Start: Impact of Timing and Start Procedure on Sprint Running Performance. Journal of Strength and Conditioning Research, 26(2), 473. https://doi.org/10.1519/JSC.0b....
 
20.
Haugen, T. A., Tønnessen, E., Svendsen, I. S., & Seiler, S. (2014b). Sprint time differences between single- and dual-beam timing systems. Journal of Strength and Conditioning Research, 28(8), 2376–2379. https://doi.org/10.1519/JSC.00....
 
21.
Haugen, T., & Buchheit, M. (2016). Sprint Running Performance Monitoring: Methodological and Practical Considerations. Sports Medicine, 46(5), 641–656. https://doi.org/10.1007/s40279....
 
22.
Heredia-Jimenez, J., & Orantes-Gonzalez, E. (2020). Comparison of three different measurement systems to assess the vertical jump height. Revista Brasileira de Medicina do Esporte, 26(2), 143–146. https://doi.org/10.1590/1517-8....
 
23.
Hopkins, W. G. (2000). Measures of Reliability in Sports Medicine and Science. Sports Medicine, 30(1), 1–15. https://doi.org/10.2165/000072....
 
24.
Hopkins, W. G., Marshall, S. W., Batterham, A. M., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine and Science in Sports and Exercise, 41(1), 3–13. https://doi.org/10.1249/MSS.0b....
 
25.
McBride, J. M., Triplett-McBride, T., Davie, A., & Newton, R. U. (2002). The effect of heavy- vs. Light-load jump squats on the development of strength, power, and speed. Journal of Strength and Conditioning Research, 16(1), 75–82.
 
26.
Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L. A., & PRISMA-P Group. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 4, 1. https://doi.org/10.1186/2046-4....
 
27.
Nagahara, R., Matsubayashi, T., Matsuo, A., & Zushi, K. (2014). Kinematics of transition during human accelerated sprinting. Biology Open, 3(8), 689–699. https://doi.org/10.1242/bio.20....
 
28.
Nuzzo, J. L., Anning, J. H., & Scharfenberg, J. M. (2011). The reliability of three devices used for measuring vertical jump height. Journal of Strength and Conditioning Research, 25(9), 2580–2590. https://doi.org/10.1519/JSC.0b....
 
29.
O’Reilly, M., Caulfield, B., Ward, T., Johnston, W., & Doherty, C. (2018). Wearable Inertial Sensor Systems for Lower Limb Exercise Detection and Evaluation: A Systematic Review. Sports Medicine, 48(5), 1221–1246. https://doi.org/10.1007/s40279....
 
30.
Romero-Franco, N., Jiménez-Reyes, P., Castaño-Zambudio, A., Capelo-Ramírez, F., Rodríguez-Juan, J. J., González-Hernández, J., Toscano-Bendala, F. J., Cuadrado-Peñafiel, V., & Balsalobre-Fernández, C. (2017). Sprint performance and mechanical outputs computed with an iPhone app: Comparison with existing reference methods. European Journal of Sport Science, 17(4), 386–392. https://doi.org/10.1080/174613....
 
31.
Soler-López, A., García-de-Alcaraz, A., Moreno-Villanueva, A., & Pino-Ortega, J. (2022). Concurrent Validity and Reliability of Devices to Measure Jump Height in Men’s Handball Players. Sensors (Basel, Switzerland), 22(23), 9070. https://doi.org/10.3390/s22239....
 
32.
Uysal, H. Ş., Ojeda-Aravena, A., Ulaş, M., Martín, E. B., & Ramirez-Campillo, R. (2023). Validity, Reliability, and Sensitivity of Mobile Applications to Assess Change of Direction Speed. Journal of Human Kinetics, 87, 217–228.
 
33.
Viitasalo, J. T., Luhtanen, P., Mononen, H. V., Norvapalo, K., Paavolainen, L., & Salonen, M. (1997). Photocell Contact Mat: A New Instrument to Measure Contact and Flight Times in Running. Journal of Applied Biomechanics, 13, 254–266.
 
34.
Willberg, C., Kohler, A., & Zentgraf, K. (2023). Construct Validity and Applicability of a Team-Sport-Specific Change of Direction Test. Journal of Human Kinetics, 85, 115–126. https://doi.org/10.2478/hukin-....
 
35.
Wong, P., Chaouachi, A., Chamari, K., Dellal, A., & Wisloff, U. (2010). Effect of preseason concurrent muscular strength and high-intensity interval training in professional soccer players. Journal of Strength and Conditioning Research, 24(3), 653–660. https://doi.org/10.1519/JSC.0b....
 
36.
Yeadon, M. R., Kato, T., & Kerwin, D. G. (1999). Measuring running speed using photocells. Journal of Sports Sciences, 17(3), 249–257. https://doi.org/10.1080/026404....
 
eISSN:1899-7562
ISSN:1640-5544
Journals System - logo
Scroll to top