SECTION III - SPORTS AND PHYSICAL ACTIVITY / RESEARCH PAPER
Rubber Band Training Improves Athletic Performance in Young Female Handball Players
 
More details
Hide details
1
Research Laboratory (LR23JS01) Sport Performance, Health & Society, Higher Institute of Sport and Physical Education of Ksar Saîd, University of Manouba, Tunis, Tunisia.
 
2
Higher Institute of Sport and Physical Education of Ksar Said, University of Manouba, Tunis, Tunisia.
 
3
Muscle Morphology, Mechanics and Performance Laboratory, Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
 
4
Department of Sports Sciences and Physical Education, Nord University, Levanger, Norway.
 
 
Submission date: 2023-01-04
 
 
Final revision date: 2023-08-08
 
 
Acceptance date: 2023-11-17
 
 
Online publication date: 2024-02-17
 
 
Corresponding author
Roland van den Tillaar   

Department of Sport Science and Physical Education, Faculty of Teacher Education and Sports, Nord University, Odins veg 23, 7603, Levanger, Norway
 
 
Journal of Human Kinetics 2024;92:227-238
 
KEYWORDS
TOPICS
ABSTRACT
This study's objective was to investigate the impact of a 10-week in season contrast rubber band training program on athletic performance in young female handball players. Youth athletes (15.8 ± 0.2 years) were randomly assigned to an intervention (n = 16) or a control group (n = 14). The intervention group performed contrast rubber band training (20 sessions over two weeks), while the control group maintained regular in-season training. The modified T-test, squat jump, countermovement jump, standing long jump, repeated sprint ability, 1-RM bench press and half squat, along with upper and lower limb force-velocity tests were performed. The intervention group experienced significantly larger performance enhancements than the control group in the modified T-test [p < 0.001; d = 1.45 %∆ (intervention = −7.1, control = −0.8)], vertical jump [p ≤ 0.009; d ≥ 0.72; %∆ (8.4 < intervention < 19.8, 4.1 < control < 12.2)], 1-RM strength [p ≤ 0.04, d ≥ 0.80; %∆ (37.1 < intervention < 39.7, 7.2 < control < 11.2)], all force-velocity scores for the upper limbs [p ≤ 0.009; d ≥ 0.72; %∆ (21 < intervention < 82, 0.1 < control < 11.6)], three of four force-velocity scores for the lower limb performance [p ≤ 0.02; d ≥ 0.64; %∆ (6.4 < intervention < 31.3, 0.8 < control < 11.1)] and all repeated sprint times [p < 0.001; d ≥ 1.15; %∆ (−3.4 < intervention < −3.1, −1.9 < control < −0.5)]. It was concluded that ten weeks of contrast rubber band training positively affected most motor abilities in youth female handball athletes. Therefore, coaches and practitioners should consider utilizing contrast rubber band strength training as a time and resource-efficient means of improving physical fitness of youth handball players.
 
REFERENCES (49)
1.
Abade, E., Sampaio, J., Santos, L., Goncalves, B., Sa, P., Carvalho, A., Gouveia, P., & Viana, J. (2019). Effects of using compound or complex strength-power training during in-season in team sports. Research in Sports Medicine, 28(3), 1–12. doi:10.1080/15438627.2019.1697927.
 
2.
Aloui, G., Hammami, M., Fathloun, M., Hermassi, S., Gaamouri, N., Shephard, R. J., & Chelly, M. S. (2019a). Effects of an 8-week in-season elastic band training program on explosive muscle performance, change of direction, and repeated changes of direction in the lower limbs of junior male handball players. Journal of Strength and Conditioning Research, 33(7), 1804–1815. doi:10.1519/jsc.0000000000002786.
 
3.
Aloui, G., Hermassi, S., Hammami, M., Cherni, Y., Gaamouri, N., Shephard, R. J., van den Tillaar, R., & Chelly, M. S. (2020). Effects of elastic band-based plyometric exercise on explosive muscular performance and change of direction abilities of male team handball players. Frontiers in Physiology, 11, 604983. doi:10.3389/fphys.2020.604983.
 
4.
Aloui, G., Hermassi, S., Hammami, M., Gaamouri, N., Bouhafs, E. G., Comfort, P., Shephard, R. J., Schwesig, R., & Chelly, M. S. (2019b). Effects of an 8-week in-season upper limb elastic band training programme.
 
5.
on the peak power, strength, and throwing velocity of junior handball players. Sportverletzung Sportschaden, 33(3), 133–141. doi:10.1055/a-0819-5185.
 
6.
Andersen, V., Fimland, M. S., Cumming, K. T., Vraalsen, O., & Saeterbakken, A. H. (2018). Explosive resistance training using elastic bands in young female team handball players. Sports Medicine International Open, 2(6), E171–e178. doi:10.1055/a-0755-7398.
 
7.
Bishop, D., & Spencer, M. (2004). Determinants of repeated-sprint ability in well-trained team-sport athletes and endurance-trained athletes. Journal of Sports Medicine and Physical Fitness, 44(1), 1–7.
 
8.
Bishop, D., Spencer, M., Duffield, R., & Lawrence, S. (2001). The validity of a repeated sprint ability test. Journal of Science and Medicine in Sport, 4(1), 19–29. doi:10.1016/s1440-2440(01)80004-9.
 
9.
Buchheit, M., Mendez-Villanueva, A., Delhomel, G., Brughelli, M., & Ahmaidi, S. (2010). Improving repeated sprint ability in young elite soccer players: repeated shuttle sprints vs. explosive strength training. Journal of Strength and Conditioning Research, 24(10), 2715–2722. doi:10.1519/JSC.0b013e3181bf0223.
 
10.
Chelly, M. S., Ghenem, M. A., Abid, K., Hermassi, S., Tabka, Z., & Shephard, R. J. (2010). Effects of in-season short-term plyometric training program on leg power, jump-and sprint performance of soccer players. Journal of Strength and Conditioning Research, 24(10), 2670–2676. doi:10.1519/JSC.0b013e3181e2728f.
 
11.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Routledge.
 
12.
Cometti, G. (1998). Los métodos modernos de musculacion. Paidotribo, Barcelona, Spain.
 
13.
Cormier, P., Freitas, T. T., Rubio-Arias, J. Á., & Alcaraz, P. E. (2020). Complex and contrast training: does strength and power training sequence affect performance-based adaptations in team sports? A systematic review and meta-analysis. Journal of Strength and Conditioning Research, 34(5), 1461–1479. doi:10.1519/jsc.0000000000003493.
 
14.
Durnin, J. V., & Womersley, J. (1974). Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. British Journal of Nutrition, 32(1), 77–97. doi:10.1079/bjn19740060.
 
15.
Elbadry, N., Hamza, A., Pietraszewski, P., Alexe, D. I., & Lupu, G. (2019). Effect of the French contrast method on explosive strength and kinematic parameters of the triple jump among female college athletes. Journal of Human Kinetics, 69, 225–230. doi:10.2478/hukin-2019-0047.
 
16.
Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. 39(2), 175–191.
 
17.
Folland, J. P., & Williams, A. G. (2007). The adaptations to strength training : morphological and neurological contributions to increased strength. Sports Medicine, 37(2), 145–168. doi:10.2165/00007256-200737020-00004.
 
18.
Grgic, J., Lazinica, B., Schoenfeld, B. J., & Pedisic, Z. (2020). Test-retest reliability of the one-repetition maximum (1RM) strength assessment: a systematic review. Sports Medicine - Open, 6(1), 31. doi:10.1186/s40798-020-00260-z.
 
19.
Haj-Sassi, R., Dardouri, W., Gharbi, Z., Chaouachi, A., Mansour, H., Rabhi, A., & Mahfoudhi, M. E. (2011). Reliability and validity of a new repeated agility test as a measure of anaerobic and explosive power. Journal of Strength and Conditioning Research, 25(2), 472–480. doi:10.1519/JSC.0b013e3182018186.
 
20.
Hammami, M., Gaamouri, N., Aloui, G., Shephard, R. J., & Chelly, M. S. (2019a). Effects of a complex strength-training program on athletic performance of junior female handball players. International Journal of Sports Physiology and Performance, 14(2), 163–169. doi:10.1123/ijspp.2018-0160.
 
21.
Hammami, M., Gaamouri, N., Shephard, R. J., & Chelly, M. S. (2019b). Effects of contrast strength vs. plyometric training on lower-Limb explosive performance, ability to change direction and neuromuscular adaptation in soccer players. Journal of Strength and Conditioning Research, 33(8), 2094–2103. doi:10.1519/jsc.0000000000002425.
 
22.
Hammami, M., Gaamouri, N., Wagner, H., Pagaduan, J. C., Hill, L., Nikolaidis, P. T., Knechtle, B., & Chelly, M. S. (2022). Effects of strength training with elastic band programme on fitness components in young female handball players: a randomized controlled trial. Biology of Sport, 39(3), 537–545. doi:10.5114/biolsport.2022.106390.
 
23.
Hammami, M., Negra, Y., Shephard, R. J., & Chelly, M. S. (2017). Effects of leg contrast strength training on sprint, agility and repeated change of direction performance in male soccer players. Journal of Sports Medicine and Physical Fitness, 57(11), 1424–1431. doi:10.23736/s0022-4707.17.06951-1.
 
24.
Hermassi, S., Chelly, M. S., Fathloun, M., & Shephard, R. J. (2010). The effect of heavy- vs. moderate-load training on the development of strength, power, and throwing ball velocity in male handball players. Journal of Strength and Conditioning Research, 24(9), 2408–2418. doi:10.1519/JSC.0b013e3181e58d7c.
 
25.
Hermassi, S., Schwesig, R., Aloui, G., Shephard, R. J., & Chelly, M. S. (2019). Effects of short-term in-season weightlifting training on the muscle strength, peak power, sprint performance, and ball-throwing velocity of male handball players. Journal of Strength and Conditioning Research, 33(12), 3309–3321. doi:10.1519/jsc.0000000000003068.
 
26.
Katushabe, E. T., & Kramer, M. (2020). Effects of combined power band resistance training on sprint speed, agility, vertical jump height, and strength in collegiate soccer players. International Journal of Exercise Science, 13(4), 950–963.
 
27.
Kraemer, W. J., Fleck, S. J., & Evans, W. J. (1996). Strength and power training: physiological mechanisms of adaptation. Exercise and Sport Sciences Reviews, 24, 363–397.
 
28.
Labib, H. (2013). Effect of complex training on CD34/CD45 stem cells, certain physical variables and jump shoot performance for female handball. Medicinal Chemistry, 8, 721–738.
 
29.
Lopes, J. S. S., Machado, A. F., Micheletti, J. K., de Almeida, A. C., Cavina, A. P., & Pastre, C. M. (2019). Effects of training with elastic resistance versus conventional resistance on muscular strength: A systematic review and meta-analysis. SAGE Open Medicine, 7, 2050312119831116. doi:10.1177/2050312119831116.
 
30.
Luteberget, L. S., & Spencer, M. (2017). High-intensity events in international women's team handball matches. International Journal of Sports Physiology and Performance, 12(1), 56–61. doi:10.1123/ijspp.2015-0641.
 
31.
Luteberget, L. S., Trollerud, H. P., & Spencer, M. (2018). Physical demands of game-based training drills in women's team handball. Journal of Sports Sciences, 36(5), 592–598. doi:10.1080/02640414.2017.1325964.
 
32.
Manchado, C., Tortosa-Martínez, J., Vila, H., Ferragut, C., & Platen, P. (2013). Performance factors in women's team handball: physical and physiological aspects--a review. Journal of Strength and Conditioning Research, 27(6), 1708–1719. doi:10.1519/JSC.0b013e3182891535.
 
33.
Markovic, G., & Mikulic, P. (2010). Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training. Sports Medicine, 40(10), 859–895. doi:10.2165/11318370-000000000-00000.
 
34.
Mascarin, N. C., de Lira, C. A. B., Vancini, R. L., da Silva, A. C., & Dos Santos Andrade, M. S. (2017a). The effects of preventive rubber band training on shoulder joint imbalance and throwing performance in handball players: A randomized and prospective study. Journal of Bodywork and Movement Therapies, 21(4), 1017–1023. doi:10.1016/j.jbmt.2017.01.003.
 
35.
Mascarin, N. C., de Lira, C. A. B., Vancini, R. L., de Castro Pochini, A., da Silva, A. C., & Dos Santos Andrade, M. S. (2017b). Strength training using elastic bands: improvement of muscle power and throwing performance in young female handball players. Journal of Sport Rehabilitation, 26(3), 245–252. doi:10.1123/jsr.2015-0153.
 
36.
Meszler, B., & Váczi, M. (2019). Effects of short-term in-season plyometric training in adolescent female basketball players. Physiology International, 106(2), 168–179. doi:10.1556/2060.106.2019.14.
 
37.
Michalsik, L. B., Aagaard, P., & Madsen, K. (2015). Technical activity profile and influence of body anthropometry on playing performance in female elite team handball. Journal of Strength and Conditioning Research, 29(4), 1126–1138. doi:10.1519/jsc.0000000000000735.
 
38.
Mirwald, R. L., Baxter-Jones, A. D., Bailey, D. A., & Beunen, G. P. (2002). An assessment of maturity from anthropometric measurements. Medicine and Science in Sports and Exercise, 34(4), 689–694. doi:10.1097/00005768-200204000-00020.
 
39.
Oranchuk, D. J., Ecsedy, E. N., & Robinson, T. L. (2021). Effects of a sport-specific upper-body resistance-band training program on overhead throwing velocity and glenohumeral joint range of motion. Journal of Strength and Conditioning Research, 35(11), 3097–3103. doi:10.1519/JSC.0000000000003303.
 
40.
Pardos-Mainer, E., Lozano, D., Torrontegui-Duarte, M., Cartón-Llorente, A., & Roso-Moliner, A. (2021). Effects of strength vs. plyometric training programs on vertical jumping, linear sprint and change of direction speed performance in female soccer players: a systematic review and meta-analysis. International Journal of Environmental Research and Public Health, 18(2), 401. doi:10.3390/ijerph18020401.
 
41.
Sale, D. G. (1988). Neural adaptation to resistance training. Medicine and Science in Sports and Exercise, 20(5 Suppl), S135–145. doi:10.1249/00005768-198810001-00009.
 
42.
Smilios, I., Pilianidis, T., Sotiropoulos, K., Antonakis, M., & Tokmakidis, S. P. (2005). Short-term effects of selected exercise and load in contrast training on vertical jump performance. Journal of Strength and Conditioning Research, 19(1), 135–139. doi:10.1519/14463.1.
 
43.
Stojanovic, E., Ristic, V., McMaster, D. T., & Milanovic, Z. (2017). Effect of plyometric training on vertical jump performance in female athletes: A systematic review and meta-analysis. Sports Medicine, 47(5), 975–986. doi:10.1007/s40279-016-0634-6.
 
44.
Saavedra, J. M., Þorgeirsson, S., Chang, M., Kristjánsdóttir, H., & García-Hermoso, A. (2018). Discriminatory power of women's handball game-related statistics at the Olympic Games (2004–2016). Journal of Human Kinetics, 62, 221–229. doi:10.1515/hukin-2017-0172.
 
45.
Wagner, H., Fuchs, P., Fusco, A., Fuchs, P., Bell, W. J., & Duvillard, S. P. (2018). Physical performance in elite male and female team handball players. International Journal of Sports Physiology and Performance, 14(1), 60–67. doi:10.1123/ijspp.2018-0014.
 
46.
Wik, E. H., Luteberget, L. S., & Spencer, M. (2017). Activity profiles in international women's team handball using playerLoad. International Journal of Sports Physiology and Performance, 12(7), 934–942. doi:10.1123/ijspp.2015-0732.
 
47.
Wilson, J. M., Duncan, N. M., Marin, P. J., Brown, L. E., Loenneke, J. P., Wilson, S. M., Jo, E., Lowery, R. P., & Ugrinowitsch, C. (2013). Meta-analysis of postactivation potentiation and power: effects of conditioning activity, volume, gender, rest periods, and training status. Journal of Strength and Conditioning Research, 27(3), 854–859. doi:10.1519/JSC.0b013e31825c2bdb.
 
48.
Wilson, J. M., Marin, P. J., Rhea, M. R., Wilson, S. M., Loenneke, J. P., & Anderson, J. C. (2012). Concurrent training: a meta-analysis examining interference of aerobic and resistance exercises. Journal of Strength and Conditioning Research, 26(8), 2293–2307. doi:10.1519/JSC.0b013e31823a3e2d.
 
49.
Wisløff, U., Castagna, C., Helgerud, J., Jones, R., & Hoff, J. (2004). Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. British Journal of Sports Medicine, 38(3), 285–288. doi:10.1136/bjsm.2002.002071.
 
eISSN:1899-7562
ISSN:1640-5544
Journals System - logo
Scroll to top