SECTION II - EXERCISE PHYSIOLOGY AND SPORTS MEDICINE / RESEARCH PAPER
Modulation of Heart Rate Variability and Brain Excitability through Acute Whole-Body Vibration: The Role of Frequency
,
 
,
 
,
 
,
 
,
 
,
 
,
 
Jia Han 3,7
,
 
Yu Zou 1
 
 
 
More details
Hide details
1
Department of Sport and Exercise Science, College of Education, Zhejiang University, Hangzhou, China.
 
2
School of Health Sciences, University of Tasmania, Launceston, TAS, Australia.
 
3
College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China.
 
4
Research Institute for Sport and Exercise, University of Canberra, Canberra, Australia.
 
5
School of Physical Education, Shanghai University of Sport, China
 
6
School of Physical Education, Shanghai University of Sport, Shanghai, China.
 
7
Faculty of Health, Arts and Design, Swinburne University of Technology, Hawthorn, VIC, Australia.
 
These authors had equal contribution to this work
 
 
Submission date: 2023-08-03
 
 
Final revision date: 2023-10-23
 
 
Acceptance date: 2024-02-06
 
 
Publication date: 2024-04-25
 
 
Corresponding author
Yu Zou   

Department of Sport and Exercise Science, Zhejiang University, China
 
 
Journal of Human Kinetics 2024;92:111-120
 
KEYWORDS
TOPICS
ABSTRACT
This cross-over study aimed to explore effects of acute whole-body vibration (WBV) at frequencies of 5–35 Hz on heart rate variability and brain excitability. Thirteen healthy physically active college students randomly completed eight interventions under the following conditions: static upright standing without vibration (CON), static squat exercise (knee flexion 150°) on the vibration platform (SSE), and static squat exercise (knee flexion 150°) combined with WBV at vibration frequency of 5, 9, 13, 20, 25, and 35 Hz. Five bouts × 30 s with a 30-s rest interval were performed for all interventions. The brain’s direct current potentials (DCPs), frequency domain variables (FDV) including normalized low frequency power (nLF), normalized high frequency power (nHF) and the ratio of LF to HF (LF/HF), along with the mean heart rate (MHR) were collected and calculated before and after the WBV intervention. Results suggested that WBV frequency at 5 Hz had a substantial effect on decreasing DCPs [−2.13 μV, t(84) = −3.82, p < 0.05, g = −1.03, large] and nLF [−13%, t(84) = −2.31, p = 0.04, g = −0.62, medium]. By contrast, 20–35 Hz of acute WBV intervention considerably improved DCPs [7.58 μV, t(84) = 4.31, p < 0.05, g = 1.16, large], nLF [17%, t(84) = 2.92, p < 0.05, g = 0.79, large] and the LF/HF [0.51, t(84) = 2.86, p < 0.05, g = 0.77, large]. A strong (r = 0.7, p < 0.01) correlation between DCPs and nLF was found at 5 Hz. In summary, acute WBV at 20–35 Hz principally activated the sympathetic nervous system and increased brain excitability, while 5-Hz WBV activated the parasympathetic nervous system and reduced brain excitability. The frequency spectrum of WBV might be manipulated according to the intervention target on heart rate variability and brain excitability.
 
REFERENCES (27)
1.
Ando, H., & Noguchi, R. (2003). Dependence of palmar sweating response and central nervous system activity on the frequency of whole-body vibration. Scandinavian Journal of Work Environment & Health, 29(3), 216–219. https://doi.org/10.5271/sjweh.....
 
2.
Aoyama A., Yamaoka-Tojo M., Obara S., Shimizu E., Fujiyoshi K., Noda C., Matsunaga A., & Ako J. (2019). Acute effects of whole-body vibration training on endothelial function and cardiovascular response in elderly patients with cardiovascular disease. International Heart Journal, 60(4), 854–861. https://doi.org/10.1536/ihj.18....
 
3.
Bedient, A. M., Adams, J. B., Edwards, D. A., Serravite, D. H., Huntsman, E., Mow, S. E., Roos B.A., & Signorile J.F. (2009). Displacement and frequency for maximizing power output resulting from a bout of whole-body vibration. Journal of Strength and Conditioning Research, 23(6), 1683–1687. https://doi.org/10.1519/JSC.0b....
 
4.
Bhuiyan, M. H. U., Fard, M., & Robinson, S. R. (2022). Effects of whole-body vibration on driver drowsiness: A review. Journal of Safety Research, 81, 175–189. https://doi.org/10.1016/j.jsr.....
 
5.
Catai, A. M., Pastre, C. M., Godoy, M. F., Silva, E. D., Takahashi, A. C. M., & Vanderlei, L. C. M. (2020). Heart rate variability: are you using it properly? Standardisation checklist of procedures. Brazilian Journal of Physical Therapy, 24(2), 91–102. https://doi.org/10.1016/j.bjpt....
 
6.
Chachlaki, K., & Prevot, V. (2020). Nitric oxide signalling in the brain and its control of bodily functions. British Journal of Pharmacology, 177(24), 5437–5458. https://doi.org/10.1111/bph.14....
 
7.
Choi, D. S., Lee, H. J., Shin, Y. I., Lee, A., Kim, H. G., & Kim, Y. H. (2019). Modulation of cortical activity by high-frequency whole-body vibration exercise: An fNIRS study. Journal of Sport Rehabilitation, 28(7), 665–670. https://doi.org/10.1123/jsr.20....
 
8.
Chowdhary, S., Vaile, J. C., Fletcher, J., Ross, H. F., Coote, J. H., & Townend, J. N. (2000). Nitric oxide and cardiac autonomic control in humans. Hypertension, 36(2), 264–269. https://doi.org/10.1161/01.hyp....
 
9.
Cochrane, D. J. (2011). The potential neural mechanisms of acute indirect vibration. Journal of Sports Science and Medicine, 10(1), 75–99.
 
10.
Jiao, K., Li, Z., Chen, M., Wang, C., & Qi, S. (2004). Effect of different vibration frequencies on heart rate variability and driving fatigue in healthy drivers. International Archives of Occupational and Environmental Health, 77(3), 205–212. https://doi.org/10.1007/s00420....
 
11.
Kovac, S., Speckmann, E. J., & Gorji, A. (2018). Uncensored EEG: The role of DC potentials in neurobiology of the brain. Progress in Neurobiology, 165–167, 51–65. https://doi.org/10.1016/j.pneu....
 
12.
Krause, A., Gollhofer, A., Freyler, K., Jablonka, L., & Ritzmann, R. (2016). Acute corticospinal and spinal modulation after whole body vibration. Journal of Musculoskeletal & Neuronal Interactions, 16(4), 327–338.
 
13.
Laborde, S., Mosley, E., & Thayer, J. F. (2017). Heart rate variability and cardiac vagal tone in psychophysiological research − recommendations for experiment planning, data analysis, and data reporting. Frontiers in Psychology, 8, 213. https://doi.org/10.3389/fpsyg.....
 
14.
Lakatos, P., Gross, J., & Thut, G. (2019). A new unifying account of the roles of neuronal entrainment. Current Biology, 29(18), 890–905. https://doi.org/10.1016/j.cub.....
 
15.
Lebedev, M. A., & Nelson, R. J. (1995). Rhythmically firing (20−50 Hz) neurons in monkey primary somatosensory cortex: activity patterns during initiation of vibratory-cued hand movements. Journal of Computational Neuroscience, 2(4), 313–334. https://doi.org/10.1007/bf0096....
 
16.
Liu, K. C., Wang, J. S., Hsu, C. Y., Liu, C. H., Chen, C. P., & Huang, S. C. (2021). Low-frequency vibration facilitates post-exercise cardiovascular autonomic recovery. Journal of Sports Science and Medicine, 20(3), 431–437. https://doi.org/10.52082/jssm.....
 
17.
Mileva, K. N., Bowtell, J. L., & Kossev, A. R. (2009). Effects of low-frequency whole-body vibration on motor−evoked potentials in healthy men. Experimental Physiology, 94(1), 103–116. https://doi.org/10.1113/expphy....
 
18.
Naranjo-Orellana, J., Ruso-Alvarez, J. F., & Rojo-Alvarez, J. L. (2021). Comparison of Omegawave device and an ambulatory ECG for RR interval measurement at rest. International Journal of Sports Medicine, 42(2), 138–146. https://doi.org/10.1055/a−1157....
 
19.
Pham, T., Lau, Z. J., Chen, S. H. A., & Makowski, D. (2021). Heart rate variability in psychology: A review of HRV indices and an analysis tutorial. Sensors, 21(12), 3998. https://doi.org/10.3390/s21123....
 
20.
Pleguezuelos, E., Casarramona, P., Guirao, L., Samitier, B., Ortega, P., Vila, X., Carmen A.D., Ovejero L., Moreno E., Serra N., Gomís M., Garnacho−Castaño M.V., & Miravitlles, M. (2018). How whole−body vibration can help our COPD patients. Physiological changes at different vibration frequencies. International Journal of Chronic Obstructive Pulmonary Disease, 13, 3373–3380. https://doi.org/10.2147/copd.S....
 
21.
Regterschot, G. R., Van Heuvelen, M. J., Zeinstra, E. B., Fuermaier, A. B., Tucha, L., Koerts, J., Tucha O., & Van Der Zee, E. A. (2014). Whole body vibration improves cognition in healthy young adults. PLoS One, 9(6), e100506. https://doi.org/10.1371/journa....
 
22.
Sañudo, B., César−Castillo, M., Tejero, S., Nunes, N., de Hoyo, M., & Figueroa, A. (2013). Cardiac autonomic response during recovery from a maximal exercise using whole body vibration. Complementary Therapies in Medicine, 21(4), 294–299. https://doi.org/10.1016/j.ctim....
 
23.
Tang, Y. Y., Ma, Y., Fan, Y., Feng, H., Wang, J., Feng, S., Lu Q., Hu B., Lin Y., Li J., Zhang Y., Wang Y., Zhou L., Fan, M. (2009). Central and autonomic nervous system interaction is altered by short-term meditation. Proceedings of the National Academy of Sciences of the United States of America, 106(22), 8865–8870. https://doi.org/10.1073/pnas.0....
 
24.
Valenzuela, P. L., Sanchez-Martinez, G., Torrontegi, E., Vazquez-Carrion, J., Montalvo, Z., & Kara, O. (2022). Validity, reliability, and sensitivity to exercise-induced fatigue of a customer-friendly device for the measurement of the brain's direct current potential. Journal of Strength and Conditioning Research, 36(6), 1605–1609. https://doi.org/10.1519/JSC.00....
 
25.
van Heuvelen, M. J., Rittweger, J., Judex, S., Sañudo, B., Seixas, A., Fuermaier A. B. M., Tucha O., Nyakas C., Marín P. J., Taiar R., Stark C., Schoenau E., Sá-Caputo D. C., Bernardo-Filho M., & van der Zee E.A. (2021). Reporting guidelines for whole-body vibration studies in humans, animals and cell cultures: a consensus statement from an international group of experts. Biology, 10(10), 965. https://doi.org/10.3390/biolog....
 
26.
Wong, A., Alvarez-Alvarado, S., Kinsey, A. W., & Figueroa, A. (2016). Whole-body vibration exercise therapy improves cardiac autonomic function and blood pressure in obese pre and stage 1 hypertensive postmenopausal women. Journal of Alternative and Complementary Medicine, 22(12), 970–976. https://doi.org/10.1089/acm.20....
 
27.
Zhang, N., Fard, M., Bhuiyan, M. H. U., Verhagen, D., Azari, M. F., & Robinson, S. R. (2018). The effects of physical vibration on heart rate variability as a measure of drowsiness. Ergonomics, 61(9), 1259–1272. https://doi.org/10.1080/001401....
 
eISSN:1899-7562
ISSN:1640-5544
Journals System - logo
Scroll to top