SECTION III - SPORTS TRAINING / RESEARCH PAPER
Identification of Peripheral Fatigue through Exercise-Induced Changes in Muscle Contractility
 
More details
Hide details
1
Department of Sports and Computers Sciences, Physical Performance & Sports Research Center, Universidad Pablo de Olavide, Sevilla, Spain.
 
2
Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
 
3
Department of Sports and Computers Sciences, Faculty of Sport Sciences, Universidad Pablo de Olavide, Sevilla, Spain.
 
4
Sport Performance, Physical Condition and Wellness Lab. Faculty of Education and Sport Sciences, Universidad de Vigo,
 
 
Submission date: 2023-11-05
 
 
Final revision date: 2023-12-15
 
 
Acceptance date: 2024-02-23
 
 
Online publication date: 2024-05-17
 
 
Corresponding author
Oscar García-García   

Physical Education and Sport, Universidad de Vigo, Facultad de Ciencias de la Educación y del Deporte, 36005, Pontevedra, Spain
 
 
 
KEYWORDS
TOPICS
ABSTRACT
The aim of this study was to assess whether tensiomyography is a tool sensitive enough to detect peripheral fatigue. Twenty-six strength-trained men were split into two groups: 1) a fatigued group (FG), who performed a full-squat (SQ) standardized warm-up plus 3 x 8 SQs with 75% 1RM with a 5-min rest interval, and 2) a non-fatigued group (NFG), who only did the SQ standardized warm-up. The countermovement jump (CMJ), maximal isometric force (MIF) in the SQ at 90º knee flexion, and TMG in vastus medialis (VM) and vastus lateralis (VL) muscles were assessed pre- and post-protocols. Data were analyzed through mixed ANOVA, logistic regression analysis, and receiver-operating curves. There were significant group x time interactions (p < 0.01) for CMJ height, MIF, maximal radial displacement (Dm), and radial displacement velocity (Vrd90) since the FG acutely decreased in these variables, while no significant changes were observed for the NFG. The logistic regression showed a significant model for detecting fatigue, whether it used the CMJ or MIF, with only the relative change in VL-Vrd90 as a fatigue predictor. The determination of the area under the curve showed that Dm and Vrd90 had good to excellent discriminative ability. Dm and Vrd90 are sensitive to detect fatigue in VL and VM muscles in resistance training contexts.
 
REFERENCES (32)
1.
Abazović, E., Paravlić, A, Zubac, D, Kovačević, E, & Šimunič, B. (2022). Decomposition of tensiomyogram and comparison with torque twitch responses after post-activation potentiation. Journal of Musculoskeletal & Neuronal Interactions, 22(3), 316–325. PMCID: PMC9438518.
 
2.
Buoite Stella, A., Cargnel, A., Raffini, A., Mazzari, L., Martini, M., Ajcevic, M., Accardo, A., Deodato, M., & Murena L. (2023). Shoulder tensiomyography and isometric strength in swimmers before and after a fatiguing protocol. Journal of Athletic Training, doi: 10.4085/1062-6050-0265.23. Online ahead of print.
 
3.
Cè, E., Longo, S., Limonta, E., Coratella, G., Rampichini, S., & Esposito F. (2020) Peripheral fatigue: new mechanistic insights from recent technologies. European Journal of Applied Physiology, 120(1), 17–39. doi: 10.1007/s00421-019-04264-w.
 
4.
Cuba-Dorado, A., Álvarez-Yates, T., Carballo-López, J., Iglesias-Caamaño, M., Fernández-Redondo, D., & García-García O. (2023). Neuromuscular changes after a Long Distance Triathlon World Championship. European Journal of Sport Science, 23(9), 1838–1848. doi: 10.1080/17461391.2022.2134053.
 
5.
De Paula Simola, R.Á., Harms, N., Raeder, C., Kellmann, M., Meyer, T., Pfeiffer, M., & Ferrauti A. (2015). Assessment of neuromuscular function after different strength training protocols using tensiomyography. Journal of Strength and Conditioning Research, 29(5), 1339–48. doi: 10.1519/JSC.0000000000000768.
 
6.
García-García, O., Cuba-Dorado, A., Álvarez-Yates, T., Carballo-López, J., & Iglesias-Caamaño, M. (2019). Clinical utility of tensiomyography for muscle function analysis in athletes. Open Access Journal of Sport Medicine, 10, 49–69. doi: 10.2147/OAJSM.S161485.
 
7.
García-García, O., Cuba-Dorado, A., Riveiro-Bozada, A., Carballo-López, J., Álvarez-Yates, T., & López-Chicharro, J.A. (2020). Maximal Incremental Test in Cyclists Causes Greater Peripheral Fatigue in Biceps Femoris. Research Quarterly for Exercise and Sport, 91(3), 460–68. doi: 10.1080/02701367.2019.1680789.
 
8.
García-Manso, J.M, Rodríguez-Ruiz, D., Rodríguez-Matoso, D., de Saa, Y., Sarmiento, S., & Quiroga, M. (2011). Assessment of muscle fatigue after an ultra-endurance triathlon using tensiomyography (TMG). Journal of Sports Sciences, 29(6), 619–25. doi: 10.1080/02640414.2010.548822.
 
9.
García-Sillero, M., Benítez-Porres, J., García-Romero, J., Bonilla, D.A., Petro, J.L., & Vargas-Molina, S. (2021). Comparison of Interventional Strategies to Improve Recovery after Eccentric Exercise-Induced Muscle Fatigue. International Journal of Environmental Research and Public Health, 18(2), 647. https://doi.org/10.3390/ijerph....
 
10.
Gasparini, M., Sabovic, M., Gregoric, I.D., Simunic, B., & Pisot, R. (2012). Increased fatigability of the gastrocnemius medialis muscle in individuals with intermittent claudication. Europena Journal of Vascular and Endovascular Surgery, 44(2), 170–6. doi: 10.1016/j.ejvs.2012.04.024.
 
11.
Gutiérrez-Vargas, R., Martín-Rodríguez, S., Sánchez-Ureña, B., Rodríguez-Montero, A., Salas-Cabrera, J., Gutiérrez-Vargas, J.C., Simunic, B., Rojas-Valverde, D. (2020). Biochemical and Muscle Mechanical Postmarathon Changes in Hot and Humid Conditions. Journal of Strength and Conditioning Research, 34(3), 847–856. doi: 10.1519/JSC.0000000000002746.
 
12.
Harmsen, J.F., Franz, A., Mayer, C., Zilkens, C., Buhren, B.A., Schrumpf, H., Krauspe, R., & Behringer M. (2019). Tensiomyography parameters and serum biomarkers after eccentric exercise of the elbow flexors. European Journal of Applied Physiology, 119(2), 455–464. doi: 10.1007/s00421-018-4043-4.
 
13.
Hosmer, D.W., Lemeshow, S. (2000). Applied logistic regression. John Wiley & Sons, Inc. doi: 10.1002/0471722146.
 
14.
Hunter, A.M., Galloway, S.D., Smith, I.J., Tallent, J., Ditroilo, M., Fairweather, M.M., & Howatson, G. (2012). Assessment of eccentric exercise-induced muscle damage of the elbow flexors by tensiomyography. Journal of Electromyography and Kinesiology, 22(3), 334–41. doi: 10.1016/j.jelekin.2012.01.009.
 
15.
Jones, C.M., Griffiths, P.C., & Mellalieu, S.D. (2017). Training Load and Fatigue Marker Associations with Injury and Illness: A Systematic Review of Longitudinal Studies. Sports Medicine, 47(5), 943–974. doi: 10.1007/s40279-016-0619-5.
 
16.
Kalc, M., Puš, K., Paravlic, A., Urbanc, J., & Šimunič, B. (2023). Diagnostic accuracy of Tensiomyography parameters for monitoring peripheral neuromuscular fatigue. Journal of Electromyography and Kinesiology, 70, 102775. doi.org/10.1016/j.jelekin.2023.102775.
 
17.
Kirkendall, D.T. (1990). Mechanisms of peripheral fatigue. Medicine & Science in Sports & Exercise, 22, 444–9.
 
18.
Macgregor, L.J., Hunter, A.M., Orizio, C., Fairweather, M.M., & Ditroilo, M. (2018). Assessment of Skeletal Muscle Contractile Properties by Radial Displacement: The Case for Tensiomyography. Sports Medicine, 48(7), 1607–1620. doi: 10.1007/s40279-018-0912-6.
 
19.
Martín-San Agustín, R., Medina-Mirapeix, F., Casaña-Granell, J., García-Vidal, J.A., Lillo-Navarro, C, & Benítez-Martínez, J.C. (2020). Tensiomyographical responsiveness to peripheral fatigue in quadriceps femoris. PeerJ, 8, e8674. doi: 10.7717/peerj.8674.
 
20.
Martín-Rodríguez, S., Loturco, I., Hunter, A.M., Rodríguez-Ruiz, D., & Munguia-Izquierdo, D. (2017). Reliability and measurement error of tensiomyography to assess mechanical muscle function: A systematic review. Journal of Strength and Conditioning Research, 31(12), 3524–3536. doi: 10.1519/JSC.0000000000002250.
 
21.
Martín-Rodríguez, S., Zubac, D., Piqueras-Sanchiz, F., Bautista, I.J., Simunic, B. (2017). Commentary: Tensiomyographic Markers Are Not Sensitive for Monitoring Muscle Fatigue in Elite Youth Athletes: A Pilot Study. Frontiers in Physiology, 8, 1068. doi.org/10.3389/fphys.2017.01068.
 
22.
Mesquita, R.N.O., Latella, C., Ruas, C.V., Nosaka, K., Taylor, J.L. (2023). Contraction Velocity of the Elbow Flexors Assessed by Tensiomyography: A Comparison Between Formulas. Journal of Strength and Conditioning Research, 37(10), 1969–1977. doi: 10.1519/JSC.0000000000004495.
 
23.
Morales-Álamo, D., Losa-Reyna, J., Torres-Peralta, R., Martin-Rincón, M., Pérez-Valera, M., Curtelin, D., Ponce-González, J.G., Santana, A., Calbet, J.A. (2015). What limits performance during whole-body incremental exercise to exhaustion in humans? Journal of Physiology, 593(20), 4631–48. doi: 10.1113/JP270487.
 
24.
Muñoz-López. A,, De Hoyo, M., Nuñez, F.J., Sañudo, B. (2022). Using Tensiomyography to Assess Changes in Knee Muscle Contraction Properties After Concentric and Eccentric Fatiguing Muscle Actions. Journal of Strength and Conditioning Research, 36(4), 935–940. doi: 10.1519/JSC.0000000000003562.
 
25.
Pakosz, P., Konieczny, M., Domaszewski, P., Dybek, T., Gnoiński, M., & Skorupska E. (2023). Comparison of concentric and eccentric resistance training in terms of changes in the muscle contractile properties. Journal of Electromyography and Kinesiology, 73, 102824. doi.org/10.1016/j.jelekin.2023.102824.
 
26.
Pereira, L.A., Ramirez-Campillo, R., Martín-Rodríguez, S., Kobal, R., Abad, C.C.C, Arruda, A.F.S., Guerriero, A., & Loturco, I. (2020). Is Tensiomyography-Derived Velocity of Contraction a Sensitive Marker to Detect Acute Performance Changes in Elite Team-Sport Athletes? International Journal of Sports Physiology and Performance, 15(1), 31–37. doi: 10.1123/ijspp.2018-0959.
 
27.
Piqueras-Sanchiz, F., Cornejo-Daza, P.J., Sánchez-Valdepeñas, J., Bachero-Mena, B., Sánchez-Moreno, M., Martín-Rodríguez, S., García-García, Ó., & Pareja-Blanco, F. (2022) Acute Mechanical, Neuromuscular, and Metabolic Responses to Different Set Configurations in Resistance Training. Journal of Strength and Conditioning Research, 36(11), 2983–2991. doi: 10.1519/JSC.0000000000004068.
 
28.
Raeder, C., Wiewelhove, T., Simola, R.Á., Kellmann, M., Meyer, T., Pfeiffer, M., & Ferrauti, A. (2016). Assessment of Fatigue and Recovery in Male and Female Athletes After 6 Days of Intensified Strength Training. Journal of Strength and Conditioning Research, 30(12), 3412–3427. doi: 10.1519/JSC.0000000000001427.
 
29.
Šimunič, B., Degens, H., Rittweger, J., Narici, M., Mekjavi, I.B., & Pišot, R. (2011). Noninvasive estimation of myosin heavy chain composition in human skeletal muscle. Medicine & Science in Sports & Exercise, 43(9), 1619–25. doi: 10.1249/MSS.0b013e31821522d0.
 
30.
Westerblad, H. (2016). Acidosis Is Not a Significant Cause of Skeletal Muscle Fatigue. Medicine & Science in Sports & Exercise, 48(11), 2339–2342. doi: 10.1249/MSS.0000000000001044.
 
31.
Wiewelhove, T., Raeder, C., de Paula Simola, R.A., Schneider, C., Döweling, A., & Ferrauti, A. (2017). Tensiomyographic Markers Are Not Sensitive for Monitoring Muscle Fatigue in Elite Youth Athletes: A Pilot Study. Frontiers in Physiology, 16(8), 406. doi: 10.3389/fphys.2017.00406.
 
32.
Wong, J.D., Bobbert, M.F., van Soest, A.J., Gribble, P.L., Kistemaker, D.A. (2016). Optimizing the Distribution of Leg Muscles for Vertical Jumping. PLoS One, 11(2), e0150019. doi: 10.1371/journal.pone.0150019.
 
eISSN:1899-7562
ISSN:1640-5544
Journals System - logo
Scroll to top