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 Comparison of Landing Biomechanics in Male Amateur  
Basketball Players with and without Patellar  Tendinopathy 

during Simulated Games 

by 
Fengping Li 1, Dong Sun 1, Yang Song 2, Yufei Fang 3, Xuanzhen Cen 1,  

Qiaolin Zhang 4,5, Yaodong Gu 1,* 

This study compared male amateur basketball players with asymptomatic patellar tendon tendinopathy (ASYM) 
to healthy controls (CON) during simulated games to explore the differences in patellar tendon force (PTF) and related 
metrics. Data on kinematics, kinetics, and electromyography were collected from 24 participants, comprising 12 in the 
ASYM group and 12 in the CON group, performing a stop-jump task in four stages (1st, 2nd, 3rd, 4th). A musculoskeletal 
model was used to calculate PTF, and Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) identified 
significant variables. In the first three stages, the ASYM group showed significantly greater PTF and the ankle discrete 
relative phase (ADRP) than the CON group, with differences of 0.98, 0.79, 0.81kg·BW−1 (p < 0.001) and 7.34°, 11.24°, 
and 2.49° (p < 0.05), respectively. In the last three stages, the ASYM group had a higher knee co-activation index (KCAI) 
than the CON group, with differences of 0.33, 0.28, and 0.25 (p < 0.05). Correlations between PTF and the ADRP and 
between PTF and the KCAI were the highest, at 0.58 and 0.61, respectively. The OPLS-DA model effectively 
distinguished between the groups, suggesting potential applications in tendon health monitoring. The findings suggest 
that elevated PTF may be linked to tendinopathy in male amateur basketball players, highlighting the importance of 
comprehensive strategies, such as improving ankle symmetry and optimizing muscle coordination to mitigate tendon 
load and injury risk 

Keywords: injury prevention; patellar tendon force; simulated basketball load; orthogonal partial least squares-
discriminant analysis; guards 
 
Introduction 

Patellar tendinopathy is common in sports 
involving repetitive jumping, especially in young 
male athletes (15–30 yrs) (Malliaras et al., 2015). In 
previous research, patellar tendinopathy 
prevalence among elite athletes reached 
approximately 14%, with volleyball and basketball 
showing rates of 45% and 32%, respectively. Non-
elite athletes showed a prevalence range from 2.5% 
to 14.4% (Tayfur et al., 2022). Over an eight-season 
period, a study conducted in a multidisciplinary 
sports club reported patellar tendinopathy 

incidence rates of 22.7% (95% Confidence Interval 
[CI]: 16.6–30.2) among professional basketball 
players and 11.4% (95% CI: 8.4–15.1) among youth 
players (Florit et al., 2019). In basketball, guards 
exhibit the highest injury rates. Given the diverse 
roles and positional demands in basketball, it is 
crucial to investigate patellar tendon (PT) injuries 
with a focus on specific player positions. Guards, 
who engage in high-intensity actions such as 
direction changes and jumps, are particularly 
susceptible to tendon, ligament, and muscle 
injuries (Petway et al., 2020; Torres-Ronda et al.,  
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2022; Hidayat et al., 2025). However, in the field of 
basketball injury biomechanics, studies that 
specifically differentiate between positional roles 
are scarce, and targeted research on guards is 
especially limited. 

Patellar tendinopathy significantly 
impacts athletes, with over one-third unable to 
return to sport within 6 months, and 53% being 
forced to retire (Cook et al., 1997). Recovery rates 
are unsatisfactory, with recurrence rates over 25% 
(Hägglund et al., 2011), and up to 50% of affected 
athletes ending their careers (Cook and Purdam, 
2009). Despite its prevalence, the biomechanical 
factors contributing to patellar tendinopathy are 
not well understood. Altered landing kinematics 
have been linked to patellar tendinopathy onset 
(Van der Worp et al., 2014), suggesting that landing 
biomechanics, including kinematics and kinetics, 
may influence or be influenced by patellar 
tendinopathy. Therefore, understanding the 
relationship between patellar tendon force (PTF) 
and patellar tendinopathy could aid in identifying 
contributing factors and thus developing 
prevention strategies (Pietrosimone et al., 2020, 
2021). However, since PTF is relatively difficult to 
measure, we have selected several more readily 
measurable and sport-specific indicators based on 
previous related studies. This will be beneficial for 
establishing classification and prediction models to 
better monitor the health status of athletes in the 
future (Dorris et al., 2024). Therefore, this study 
focuses on several key metrics such as PTF, knee 
joint angular velocity (KAV), knee joint stiffness 
(KS), hip-knee-ankle joint symmetry, and lower 
limb muscle activation. 

Given the importance of understanding 
these biomechanical factors, it is crucial to 
investigate specific metrics that could provide 
deeper insights into patellar tendinopathy 
development and prevention. Previous studies 
have frequently used the drop-jump task for data 
collection, which differs from actual landing 
patterns. Hence, we have chosen stop-jumps as our 
testing action. Moreover, there is currently limited 
research focusing on the cumulative impact of 
game-specific loads' effects on the PT, particularly 
in basketball, where games consist of distinct 
phases (Scanlan et al., 2018). Fatigue has been 
demonstrated to significantly alter jump-landing 
biomechanics, particularly in the trunk and pelvic 
regions, which consequently affects lower  
 

 
extremity loading (Vermeulen et al., 2023). In 
addition, the integration of machine learning in 
analyzing the relationship between training load 
and injury risk is a new but fast-growing research 
area. However, there is no clear consensus on the 
most relevant variables for analysis (Cui et al., 
2023; Majumdar et al., 2022). Orthogonal Partial 
Least Squares-Discriminant Analysis (OPLS-DA) 
is a method designed to extract information from 
predictor variables (X) to predict or classify 
samples into predefined classes or groups 
represented by response variables (Y). However, 
unlike traditional ways, OPLS-DA decomposes the 
variation in the data into predictive and orthogonal 
components. This orthogonalization step separates 
the variation correlated with class discrimination 
(predictive variation) from unrelated systematic 
variation (orthogonal variation), thereby 
enhancing the interpretability of the model and 
improving its predictive performance. For relevant 
indicators, we used machine learning methods to 
establish classification models, and by leveraging 
this statistical technique, this study aimed to gain 
deeper insights into the factors associated with 
patellar tendinopathy and develop more accurate 
predictive models for risk assessment and 
diagnosis. Thus, it would be possible to 
supplement cumbersome screening with more 
readily available indicators and to conduct timely 
and tracking detection in daily training and 
competitions. 

The investigation of these variables aimed 
to analyze the biomechanical variances observed in 
landing mechanics, which might be associated 
with asymptomatic abnormalities in the PT 
structure during jump landings, and how these 
factors varied under accumulated game-specific 
simulated basketball loads. This exploration would 
aid in uncovering factors associated with patellar 
tendinopathy (Tayfur et al., 2022). Upon 
identifying these patellar tendinopathy-related 
factors, we could further utilize machine learning 
techniques to establish classification models for 
these relevant indicators. This would enable 
ongoing monitoring of PT health during daily 
training and competitions, thereby providing a 
more scientific basis for injury prevention and 
rehabilitation program development. We 
hypothesized that abnormalities in the PT 
structure would be partially associated with the 
proposed indicators. Furthermore, among amateur  
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basketball players, the differences in these related 
indicators would vary under different 
accumulated loads. 

Methods 
Participants 

An a priori power analysis was conducted 
using G*Power version 3.1.9.7 (Faul et al., 2007) to 
estimate the required sample size. The analysis 
was based on data from Pietrosimone et al. (2022) 
(N = 30), which compared asymptomatic and 
control groups on the knee-flexion angle during 
the stance phase of landing. The reported effect 
size ranged from Cohen's d = 0.96 to 1.01 across the 
early (8%–13%, Cohen's d = 0.99) and late (74%–
94%, Cohen's d = 0.96) stance phases, considered to 
be large using Cohen's (1988) criteria. For ANOVA 
calculations, the effect size was converted to f = 
0.505. Using a significance level of α = 0.05 and 
statistical power of 0.80, a total of 24 participants 
(12 per group) were deemed sufficient. 
Participants were recruited based on the following 
eligibility criteria: (1) being a starting basketball 
player without any professional training 
experience, and (2) competing in school- or 
university-level games 1–2 times per week with 
additional self-training sessions 1–2 times per 
week (Li et al., 2023). A total of 24 right-dominant 
male amateur basketball players were included. 
Dominance was determined based on the 
preferred leg for kicking a ball, with the non-
dominant leg more frequently used for jumping 
and landing during layups in basketball (Benítez-
Martínez et al., 2019). All participants underwent a 
single-legged decline squat test to evaluate PT 
functionality (Herrington, 2014; Levinger et al., 
2006). Subsequently, a professional 
musculoskeletal ultrasound physician conducted 
bilateral knee ultrasound imaging and diagnosis 
for all participants. Those exhibiting PT ultrasound 
abnormalities (hypoechoic region ≥ 2 mm) were 
assigned to the asymptomatic with PT abnormality 
(ASYM) group, while the remaining participants 
were assigned to the health control (CON) group 
(Benítez-Martínez et al., 2019; Cushman et al., 
2021). Both groups were composed of an equal 
number of participants, with 12 in each group. 
Informed consent was obtained, and the protocol 
was approved by the Ethics Committee of the 
Faculty of Sports Science, Ningbo University, 
Ningbo, China (protocol code: RAGH20231105;  

 
approval date: 05 November 2023).  

Experimental Protocol 

Participants began with a 5-min standard 
dynamic warm-up, which included low-intensity 
jogging, whole-body dynamic and static stretches, 
and brief bouts of high-intensity running (Scanlan 
et al., 2012). They then performed two maximal-
effort stop-jumps, touching a height marker. The 
average height determined the target for the actual 
stop-jump test, set at 85% of this height. After 
setting the target height, the Basketball Exercise 
Simulation Test (BEST) was used to simulate 
basketball-specific activity and impose game-
specific simulated basketball load on the 
participants. High-intensity, intermittent exercise 
protocols, such as those employed in this study, 
have been shown to induce acute and prolonged 
neuromuscular fatigue, making them valuable 
tools for biomechanical screenings under fatigued 
conditions (Vermeulen et al., 2024). 

Briefly, the BEST consisted of 4 × 10-min 
quarters with 3-min rest intervals between 
quarters, except for a 15-min rest interval at 
halftime to simulate a basketball game. Each circuit 
was time-bound (30 s) and performed 
continuously across each simulated quarter, with a 
maximum of 20 circuits per 10-min quarter. 
Participants typically completed each circuit 
within 25 s, allowing at least 5 s of rest before 
starting the next circuit. If participants failed to 
complete a circuit within the allotted time, they 
were required to come to a complete stop and 
begin the next circuit immediately (Scanlan et al., 
2018). At the end of each quarter, participants 
underwent the stop-jump vertical reach test as 
shown in Figure 1A. The overall experimental 
procedure is illustrated in Figure 1C. Participants 
performed a one-step stop-jump to touch a marker 
on a height measurement device. Five jump-
landing trials were conducted, and three successful 
trials were averaged for further data analysis. A 
successful trial required participants to touch the 
marker with their right hand and land with both 
feet on the force plate. The rest intervals were spent 
in a seated position. The different activity types 
and distances performed during each BEST circuit 
are shown in Figure 1B. 

Data Acquisition 

Thirty-eight retroreflective markers were 
affixed following a previously established protocol  
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(Song et al., 2023). Motion capture was conducted 
using a 10-camera Vicon system at 200 Hz (Vicon 
Vero, Oxford Metrics Ltd., Oxford, UK) and 
ground reaction forces (GRF) were simultaneously 
measured at 1000 Hz via two large stationary 
Kistler 3D force plates (model 9287C, dimensions 
900 × 600 × 100 mm, Kisler Instrumente AG, 
Winterthur, Switzerland). Electromyography 
(EMG) signals from lower limb muscles including 
rectus femoris (RF), vastus lateralis (VL), vastus 
medialis (VM), biceps femoris (BF), 
semitendinosus (ST), medial gastrocnemius (MG), 
peroneus longus (PL), and tibialis anterior (TA) 
were recorded at 1000 Hz using the Delsys Trigno 
Avanti Sensors (Delsys, Boston, MA, USA). Data 
from the moment of initial ground contact to the 
moment of maximum knee flexion angle were 
processed for further analysis. 

Data Processing and Statistical Analysis 

The OpenSim inverse kinematics tool 
(Stanford University, Stanford, CA, USA) was used 
to process the marker coordinates, which were 
low-pass filtered with a zero time-lag fourth order 
Butterworth filter at a cutoff frequency of 10 Hz to 
calculate the hip, knee, and ankle joint angles. The 
OpenSim inverse dynamics tool combined GRF 
and joint kinematic data to compute net internal 
joint moments. To ensure accuracy, force plate data 
were filtered similarly. The static optimization tool 
in OpenSim estimated individual muscle forces at 
each time step. Discrete Relative Phase (DRP) 
calculations assessed coordination between left 
and right limb joints for the hip (HDRP), knee 
(KDRP), and ankle (ADRP), respectively. 

EMG data were processed with a 
Butterworth filter (cutoff frequencies 10 Hz and 
450 Hz) to eliminate artifacts, and then fully 
rectified.  After rectification, the signal was 
refiltered using a low-pass filter with a cutoff 
frequency of 5 Hz. Subsequently, the root mean 
square (RMS) amplitude and integrated EMG 
(IEMG) of the processed signal were calculated for 
each segment to determine the knee joint co-
activation index (KCAI) and the ankle joint co-
activation index (ACAI). To ensure the 
comparability of EMG data across different 
subjects, the Root Mean Square (RMS) amplitude 
values at each time point were normalized using 
the maximum value within the action cycle. This 
normalization ensured that the EMG data from  
 

 
different subjects were compared on the same 
scale. Additionally, left KAV and KS were 
computed. All calculation formulas for these 
variables are provided in the appendix. 

Bland-Altman consistency evaluation 
plots were utilized to validate the musculoskeletal 
model's predictive capacity against actual surface 
EMG data. Statistical analysis was performed 
using SPSS 26.0 (SPSS, Chicago, IL, United States), 
with data expressed as mean ± standard deviation 
(SD). The Shapiro-Wilk test was first performed to 
assess data normality. Two-way repeated 
measures ANOVA was conducted to examine 
intervention effects. Post-hoc analyses were 
performed using Bonferroni correction to adjust 
for multiple comparisons. When the assumption of 
sphericity was violated, the Greenhouse-Geisser 
correction was applied to adjust the degrees of 
freedom. Effect sizes were reported as partial eta 
squared (η²) (small: 0.01 to 0.059, moderate: 0.06 to 
0.137, and large > 0.138). For pairwise comparisons, 
the effect size was determined by Cohen's d with 
thresholds of 0.2 (small effect), 0.5 (medium effect), 
and 0.8 (large effect). The alpha level was set at p < 
0.05 for significant difference, and p < 0.001 for 
highly significant difference. 

Correlation analyses were conducted to 
identify variables correlated with PTF, including 
HDRP, KDRP, ADRP, KAV, KS, KCAI, ACAI, and 
IEMG contribution rates of individual muscles. 
Pearson correlation analysis and linear regression 
were employed to explore the relationships 
between the variables. Correlations were 
categorized as weak for coefficients between 0.01 
and 0.16, moderate for coefficients between 0.16 
and 0.49, strong for coefficients between 0.49 and 
0.81, and very strong for coefficients between 0.81 
and 1.00 (Schober et al., 2018). OPLS-DA was 
employed to distinguish between two group data 
and identify effective classification variables. 
Evaluation of the model predictive ability was 
done through the coefficient of determination for 
the Y variable (R2Y), cross-validated coefficient of 
determination (Q2Y), permutation testing for R2Y 
(pR2Y), permutation testing for Q2Y (pQ2), and 
Root Mean Squared Error of Estimation (RMSEE) 
values. 

Results 
Model Validation 

The EMG acquisition data and OpenSim  
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simulation data were normalized and subjected to 
a consistency assessment. In the Bland-Altman 
plot, the data form a horizontal band indicated no 
linear or a nonlinear relationship between the 
differences and the means. The histogram on the 
right side of Figure 2 shows that the differences 
follow a normal distribution. The results in Figure 
2 demonstrate that the majority of the data points 
fall within the limits of agreement, indicating good 
consistency between the two methods and 
validating the reliability of our model. 

Discrete Relative Phase (DRP) 

The interaction effect between groups and 
load accumulation on the ADRP was statistically 
significant (F(3, 24) = 1.677, p = 0.032). During the 
first three stages, the ASYM group exhibited 
significantly higher DRP values compared to the 
CON group, with differences of 7.34° (d = 
0.351),11.24° (d = 0.728), and 2.49° (d = 0.187) of the 
absolute value, respectively (p < 0.05). Within the 
ASYM group, the DRP value during the 1st quarter 
was significantly higher than during the 4th 
quarter, with a difference of 1.53° (p < 0.05, d = 
0.141). 

Kinetics and Muscle Activation Patterns 

The interaction effect between groups and 
load accumulation on PTF was statistically 
significant (F(3, 24) = 4.128, p = 0.003). During the 
first three stages, the ASYM group exhibited 
significantly higher PTF values compared to the 
CON group, with differences of 0.98 (d = 0.791), 
0.79 (d = 0.827), and 0.81 kg·BW−1 (d = 0.850), 
respectively (p < 0.001). In the CON group, PTF 
during the 4th quarter was significantly higher than 
during the 3rd quarter, with a difference of 0.22 
kg·BW−1 (p < 0.05, d = 0.219). 

The interaction effect between groups and 
load accumulation on KCAI was statistically 
significant (F(3, 12) = 8.033, p = 0.003). During the 
last three stages, the ASYM group exhibited 
significantly higher KCAI values compared to the 
CON group, with differences of 0.33 (d = 0.154), 
0.28 (d = 0.257), and 0.25 (d = 0.635), respectively (p 
< 0.05). In the CON group, the KCAI during the 4th 
quarter was significantly higher than during the 1st 
quarter, with a difference of 0.26 (p < 0.05, d = 0.593). 

Relationships and Recognition among Variables 

Figure 3 presents the detailed distribution 
of correlations between variables, depicting the  

 
results of data collection during landing. From 
Figure 3, it can be inferred that the highest 
correlations exist between PTF, the ADRP, and the 
KCAI, with correlation coefficients of 0.58 and 0.61, 
respectively, indicating a strong correlation. 

The OPLS-DA analysis results are shown 
in Figure 4. The R2Y(0.962) and Q2Y(0.952) values 
indicate good model performance in both fit and 
prediction. The models’ predictive component 
1(p1), Orthogonal Component 1 (o1), and 
Orthogonal Component 2 (o2) further separate the 
variation related to the prediction from the 
unrelated systematic variation, helping the model 
better understand other secondary features in the 
data, as shown in Figure 4A. Figure 4B shows the 
distribution of R2Y and Q2Y values for the original 
model (shown as black dots) compared to 
permuted models (grey dots). pR2Y = 0.05 and pQ2 
= 0.05 indicate the p-values for the permutation 
test, showing the significance of the R2Y and Q2Y 
values. Figure 4C displays orthogonal distance 
(OD) versus score distance (SD) for each 
observation. Red and blue dots represent the CON 
group and the ASYM group, respectively. 
Observations outside the dashed lines are potential 
outliers or influential points in the model. There is 
a small number of 7 outliers in total, which 
indicates the model's robustness. The OPLS scores 
plot shown in Figure 4D, indicates good separation 
between the sample groups, suggesting that the 
model can effectively distinguish between the 
conditions. 

Discussion 
This study revealed significant differences 

in landing biomechanics between basketball 
players with and without ultrasound-detected 
patellar tendon structural abnormalities under 
game-specific simulated basketball loads. Notably, 
the PTF, ADRP, and KCAI showed marked 
differences. We also explored the relationships 
between various metrics and conducted 
classification modeling, which demonstrated 
strong interpretability and predictive capability. 

Through this study, we found that the 
ASYM group exhibited significantly higher PTF 
and ADRP during landing in the first three stages 
and a higher KCAI in the last three stages. PTF was 
highly positively correlated with both the ADRP 
and the KCAI. This indicates that the lower limb  
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joints in the ASYM group respond more intensely 
to the cumulative load, especially in the early 
stages of loading, which may increase the stress 
and risk of injury to the PT. Additionally, the 
classification of PT abnormalities based on the 
indicators proposed in this study demonstrated 
excellent predictive performance.  

Previous studies have found that runners 
with abnormal tendon structures have an 
increased risk of experiencing pain within one 
year. Ultrasonography may be associated with a 
higher risk of subsequent tendon pain (Cushman 
et al., 2022; Kudron et al., 2020). In the event of 
asymptomatic ultrasound-detected tendon 
abnormalities, the relative risk of developing 
Achilles and PT pain is approximately three times 
higher (Cushman et al., 2021; Song et al., 2024). 
Therefore, we used ultrasound as a screening tool  

 
to select participants with asymptomatic PT 
abnormalities, allowing us to prospectively 
explore the factors leading to tendon structural 
abnormalities. Furthermore, we focused on guards 
in basketball and included cumulative game-
specific simulated basketball loads to make the 
research more targeted and relevant to real 
conditions. 
 
 
 
 
 
 
 
 
 

 
 

 
Table 1. DRP of joint couplings for the hip, knee, and ankle joints. 

 
ASYM η² F p 
1st 2nd 3rd 4th 1st 2nd 3rd 4th    

Knee DRP (°) 
−9.64 
± 24.16 

−13.62 
± 21.95 

−8.22 
± 20.74 

−16.38 
± 26.34 

13.49 
± 48.97 

−10.93 
± 65.11 

13.94 
± 29.79 

16.63 
± 32.43 

0.005 0.037 0.866 

Ankle DRP (°) −48.81 
± 46.89* 

−31.96 
± 73.01* 

−44.74 
± 77.70* 

−58.57 
± 81.75 

−56.15 
±56.11 #* 

−43.20 
± 77.11* 

−47.23 
± 87.38* 

−63.68 
± 94.42# 

0.259 1.677 0.032 

Hip DRP (°) 
−20.15 
± 30.47 

−30.38 
± 25.21 

−25.91 
± 26.27 

23.89 
± 42.81 

−13.49 
± 48.97 

−11.78 
± 71.06 

15.63 
± 29.33 

18.50 
± 33.98 

0.030 0.552 0.649 

Knee Angular 
velocity (rad/s) 12.56 

± 1.71 
12.16 
± 1.46 

11.72 
± 0.61 

12.85 
± 0.44 

11.38 
± 1.21 

11.78 
± 1.30 

11.84  
± 0.90 

11.56 
± 1.33 

0.115 2.328 0.085 

Note: * indicates a significant difference between the stages of the two groups; 
 # indicates a significant difference between the stages within the same group 

 
Table 2. Patellar tendon force, knee stiffness, and the joint co-activation index. 

 
CON ASYM η² F p 
1st 2nd 3rd 4th 1st 2nd 3rd 4th    

Patellar tendon 
force (KG·BW−1) 

0.28 
± 0.20* 

0.46 
± 0.29* 

0.42 
± 0.23*# 

0.64 
± 0.34 # 

1.26 
± 0.14* 

1.25 
± 0.19* 

1.23 
± 0.27* 

1.24 
± 0.20 

0.608 4.128 0.003 

Knee Stiffness 
(N·m/°) 

0.59 
± 0.23 

0.79 
± 0.49 

0.75 
± 0.57 

0.71 
± 0.47 

1.27 
± 1.05 

1.78 
± 1.22 

1.48 
± 1.94 

1.10 
± 1.97 

0.281 2.082 0.143 

Knee joint co-
activation index 

0.61 
± 0.16# 

0.65 
± 0.07* 

0.71 
± 0.34* 

0.87 
± 0.02*# 

0.78 
± 0.21 

0.98 
± 0.19* 

0.99 
± 0.30* 

1.12 
± 0.23* 

0.668 8.033 0.003 

Ankle joint co-
activation index 

2.05 
± 0.63 

1.89 
± 0.99 

1.97 
± 0.79 

0.93 
± 0.34 

2.19 
± 0.87 

2.39 
± 0.86 

3.19 
± 1.32 

1.91 
± 0.53 0.410 2.082 0.173 

Note: * indicates a significant difference between the stages of the two groups;  

# indicates a significant difference between the stages within the same group 
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Figure 1. Diagram of data acquisition. (A) Diagram of the stop-jump test. (B) The 

schematic depiction of the Basketball Exercise Simulation Test. High indicates the high-
intensity shuffling; Low indicates the low-intensity shuffling. (C) Experimental 

procedure. 
 
 
 
 

Figure 2. Bland-Altman consistency evaluation plot of the musculoskeletal model.  
Note: Red dashed lines represent a 95% confidence interval for the difference between 

measurement methods and red solid lines represent the average of the difference between the two 
measurement methods 
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Figure 3. Detailed distributions of the correlation coefficient values between variables. 

PTF: patellar tendon force; HDRP: hip discrete relative phase; KDRP: knee discrete relative phase; 
ADRP: ankle discrete relative phase; KAV: left knee joint angular velocity; KS: knee joint stiffness; 

KCAI: knee joint co-activation index; ACAI: ankle joint co-activation index; BF, GM, PL, RF, 
SM, TA, VL, VM: IEMG contribution rates of each muscle 

 
 

 
Figure 4. Performance evaluation and validation of the OPLS model; (A) model 

performance metrics; p1 indicates the model’s predictive component; o1 indicates the 
orthogonal component 1; o2 indicates the orthogonal component 2; (B) permutation test 
for model validation; (C) observation diagnostics; (D) scores plot from the OPLS model; 

blue indicates the ASYM group, and red indicates the CON group. 
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High PTF has been identified as a major 

contributing factor to patellar tendinopathy (Jie et 
al., 2024; Rudavsky and Cook, 2014). Our study 
further observed that basketball players with 
asymptomatic PT abnormalities exhibited higher 
PTF during the landing phase of stop-jumps. There 
was a notable interaction between the group 
classification and cumulative load affecting PTF. 
Specifically, the ASYM group demonstrated higher 
PTF levels in the initial three stages of load, 
particularly pronounced in the first stage. In 
contrast, within the CON group, PTF was higher in 
the fourth stage compared to the third, possibly 
due to cumulative fatigue effects. The heightened 
initial response of the ASYM group may stem from 
underlying structural abnormalities in their 
tendons, rendering them more vulnerable to stress. 
Our study also noted significant cumulative load 
effects on the knee KCAI, particularly evident in 
the CON group. This finding suggests that healthy 
athletes can effectively adjust muscle coordination 
strategies in response to progressively increasing 
loads to maintain knee joint stability. In contrast, 
individuals in the ASYM group, potentially 
affected by underlying knee joint issues, exhibited 
higher KCAI values during the early stages of load 
accumulation, possibly to cope with early physical 
demands and challenges. Previous studies on the 
results of the ADRP in volleyball-blocking 
landings have shown that females exhibit greater 
hip, knee, and ankle DRPs than males, indicating 
poorer lower limb symmetry during these 
movements. In our study, there was a significant 
interaction between group and cumulative load on 
the ADRP. The ASYM group showed higher ADRP 
values in the early stages, suggesting a stronger 
response to initial loads. However, this response 
diminished over time, possibly due to adaptation 
mechanisms or fatigue. Additionally, the ASYM 
group had greater absolute ADRP values than the 
CON group in the first three stages, indicating 
more asymmetrical loading on the passive support 
structures of the legs and poorer dynamic stability 
during landing (Hughes, 2014; Hughes and 
Watkins, 2008). 

In a related study, Janssen et al. (2013) 
calculated PTF using knee joint torque and PT 
moment arm and predicted PTF through 
multivariate regression equations. They found that 
male participants with greater quadriceps 
strength, increased ankle dorsiflexion velocity, and  
 

increased trunk flexion velocity during landing 
were expected to generate higher PTF (Janssen et 
al., 2013). In our study, we collected surface EMG 
data and analyzed the activity status of relevant 
muscles, and the results showed significant 
differences in the effect of cumulative load on the 
KCAI between the ASYM and CON groups. 
Different response patterns in the KCAI were 
observed during cumulative loading. In the last 
three stages, the CON group had a lower KCAI, 
which may reflect a higher level of activation of 
knee joint agonist muscles compared to antagonist 
muscles. Viitasalo et al. (1998) found that trained 
long jumpers exhibited higher muscle activity in 
the gluteus medius, vastus lateralis, and 
gastrocnemius muscles during specific phases of 
jumping compared to untrained participants. 
Within the CON group, the increase in KCAI 
values from the 1st to the 2nd stage may indicate an 
increase in the activation level of knee joint 
antagonist muscles with cumulative load. This 
intra-group change suggests that individuals in the 
CON group respond to gradually increasing load 
during cumulative loading by enhancing muscle 
coactivation to maintain knee joint stability. 

The correlation analysis among the test 
indicators revealed strong correlations: PTF with 
the ADRP (0.58) and the KCAI (0.61). This 
correlation between the ADRP and the KCAI with 
PTF may reflect the complex interactions between 
knee and ankle joints during jump landing, where 
coordination and stability influence muscle 
activity patterns and force transmission. During 
landing, the lower limbs experience a load pattern 
from distal to proximal, primarily controlled by the 
foot and the ankle, and then dispersed to the knee 
and hip joints (Zhang et al., 2018). The CON group 
exhibited better ankle joint symmetry, and early 
accumulation of load in the CON group showed 
better ankle joint symmetry, which may contribute 
to stabilizing the lower limb and reducing 
asymmetric loads borne by the knee joint, thereby 
reducing PTF. During single-leg landing, the ankle 
heavily relies on its surrounding muscular-tendon 
units to dissipate impact loads, particularly the 
ankle dorsiflexion, which provides 30%–50% of 
impact absorption (Lee et al., 2018). On the other 
hand, a higher KCAI indicates increased 
coactivation of muscles around the knee joint, 
potentially enhancing knee joint stability and 
control, but it may also increase the overall load on  
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the knee joint. Therefore, the correlation between 
the ADRP, the KCAI, and PTF reveals the complex 
coordination mechanisms required by the lower 
limbs during landing to ensure the effectiveness 
and safety of movement. These findings emphasize 
the importance of focusing on ankle joint 
coordination and knee joint stability in sports 
training and rehabilitation. By optimizing the 
function of these joints, impact, and stress borne by 
the lower limbs during high-intensity activities can 
be better managed and alleviated, thereby 
preventing potential injuries. 

Finally, we conducted classification 
modeling of the test indicators using OPLS-DA 
through machine learning methods. Previous 
studies have indicated that data-driven machine 
learning approaches are believed to perform 
modeling calculations faster than musculoskeletal 
models and have higher prediction accuracy. 
Additionally, Zou et al. (2022) developed a transfer 
learning model to estimate the knee contact medial 
force of knee valgus patients during rehabilitation 
gaits (Zou et al., 2022). 

Janssen et al. (2013) utilized backward 
multiple regression analyses to determine which 
risk factors or landing technique variables were 
predictive factors for PT load. Xu et al. (2023) 
revealed a highly positive correlation between 
AIC, AROM, and PAF, and used the metaheuristic 
optimization algorithm SSA to optimize the model 
parameters. They proposed a secondary 
optimization by constructing a PAF prediction 
model, ultimately resulting in a highly accurate 
and easily implemented ACL force prediction 
model. Our classification model demonstrates high 
predictive capability (R2Y = 0.962, Q2Y = 0.952, 
pR2Y = 0.05, pQ2 = 0.05). Furthermore, we found 
that PTF, ADRP, KCAI, and IEMG contribution 
rates of VM play significant roles in discriminating 
between sample groups. In the future, these 
indicators are expected to be used for monitoring 
the PT health status of basketball players, 
facilitating monitoring during training or 
competitions, and aiding in the prevention of PT 
injuries. 

 
This study focused exclusively on amateur 

basketball players without professional training 
experience. Therefore, the findings may not be 
directly generalizable to professional or elite-level 
basketball players. Additionally, some limitations 
could be optimized in future research. Firstly, our 
study only included male participants and focused 
on lower extremity indicators. Further research is 
needed to determine whether the patterns of PT 
load inferred from the results are universal. 
Additionally, discrepancies may still exist between 
simulated and actual basketball game loads. 

Conclusions 
The study indicated that asymptomatic 

basketball players with PT abnormalities exhibited 
significantly higher PTF, ADRP, and KCAI after 
multiple game-specific simulated basketball load 
phases compared to healthy basketball players. 
This suggests that the increased mechanical load 
and stress response in the asymptomatic group 
may elevate the risk of patellar tendinopathy. To 
mitigate this risk, comprehensive strategies are 
necessary. Improving ankle joint symmetry during 
landing may help distribute lower limb forces 
more evenly, potentially reducing excessive stress 
on the PT. Additionally, optimizing strategies for 
the KCAI should focus on enhancing muscle 
coordination without compromising joint stability. 
Such measures can help decrease the mechanical 
load on the PT, thereby potentially lowering the 
incidence of patellar tendinopathy. Additionally, 
our classification model, which demonstrated 
strong interpretive and predictive capabilities, 
shows promise as a screening tool for monitoring 
PT health in athletes. In conclusion, by 
understanding the biomechanical differences and 
correlations between athletes with and without 
patellar tendinopathy, targeted interventions can 
be developed to prevent patellar tendinopathy, 
ultimately aiding in the maintenance of athlete 
performance and longevity in their sports careers. 
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