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How Much Can the Genotype Predict Phenotypical
Power Performance in Elite Male and Female Athletes?

by
Lukas Reichert 1*, Sebastian Hacker 2, Michael Mutz 3, Markus Raab 4,
Lena Wiese °, Karsten Kriiger 2, Karen Zentgraf !

The role of power performance in elite athletes has been enriched by identifying associations between specific
single nucleotide polymorphisms (SNPs) and power performance. To deepen our understanding of this association, the
objective of this study was to explore the relationship between the genotype and the phenotype in elite athletes. A total of
278 German national squad athletes (156 males, 122 females) underwent genotyping, and their performance in a
countermovement jump test (CM]) and 10-m sprint was assessed. Genotype distribution was analyzed using Chi-square
tests. Spearman correlation was employed to examine associations between selected SNPs (e.g., ACTN3, AGT,
HSD17B14, IP6K3, MTRR, UCP2, and VDR) and CM] and sprint performances. Gender-specific polygenic "Total
Genotype Scores” (TGSsig) were calculated. Predictive power of TGSsig on power performance was evaluated using
linear regression. TGSsig explained 10% of variance in CM] and sprint performance in both genders. Among males,
correlations were identified between AGT and VDR with the CM] as well as between IP6K3 and sprint performance
(p <0.05). In females, ACTN3, AGT, and UCP2 exhibited associations with the CM], while HSD17B14, MTRR, and
UCP2 were correlated with sprint performance (p < 0.05). Significant differences in genotype distribution between
genders were observed for DMD and MPRIP. Our findings strengthen the idea of power being partly heritable, however,
the genotype only partially, by 10%, determines power performance. The role of the athletes’ genotype for individual
performance development should be investigated in future longitudinal studies.
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Introduction develop performance and health on an individual

] o ] basis. Based on this framework, the current paper
While early studies in expertise research

focused on the idea of deliberate practice directly
leading to expertise (Ericsson et al., 1993), newer
models focus more on multifactorial approaches.
In the Multifactorial Gene-Environment Interaction
Model of Expertise, Ullén et al. (2016) consider
several factors such as cognition and physical

aims to investigate the relationship of selected
genetic polymorphisms and phenotypical power
performance in an elite athletes” population.
Power is defined as the ability to generate
maximum force within the shortest possible time,
with studies highlighting its importance in team
) . sports and gymnastics (for review see Cronin and
properties as well as the gene-environment Sleivert, 2005). In volleyball, Gongalves et al. (2021)
interaction as important. This framework has been demonstrated that elite players exhibited superior
power performance in countermovement jump
tests and the medicine ball throw compared to sub-
elite players. In ice hockey, Vigh-Larsen et al.

recently applied to expertise in sports (Zentgraf
and Raab, 2023) as part of a government-funded
project (the in:prove project) which aims to

! Movement and Exercise Science, Goethe University Frankfurt, Frankfurt, Germany.

2 Department of Exercise Physiology and Sports Therapy, Justus Liebig University Giessen, Giessen, Germany.
3 Social Sciences of Sport, Justus Liebig University Giessen, Giessen, Germany.

4 Institute of Psychology, German Sport University Cologne, Cologne, Germany.

5 Database Technologies and Data Analytics, Goethe University Frankfurt, Frankfurt, Germany.

* Correspondence: reichert@sport.uni-frankfurt.de

[GWON



96 How much can the genotype predict phenotypical power performance?

(2019) as well as Ransdell et al. (2011) have
concluded that elite-level ice hockey requires a
high level of power for both male and female
athletes. In gymnastics, Douda et al. (2008) showed
that power was an important determinant of
successful performance. Therefore, power seems to
be a relevant performance variable in such sports.

In the field of genetic research, previous
studies have suggested that genotypes of specific
single nucleotide polymorphisms (SNPs), such as
the RR genotype in Actinin-alpha3 R577X
(ACTN3) and the deletion genotype in the
angiotensin I converting enzyme
insertion/deletion polymorphism (ACE), are over-
represented within elite athletes in power-oriented
sports (for review see El Ouali et al., 2024; Ma et al.,
2013). These SNDPs are also significantly associated
with phenotypical power performance measures
such as the countermovement jump (for review see
Ahmetov et al,, 2022; Appel et al., 2021; Varillas
Delgado et al., 2022). The reported associations
indicate that part of the variance in power
performance may be explained by the athletes’
genotype and is therefore partly heritable (49-86%
according to Ahmetov et al., 2022). One of the best
studied gene variants in this context is the R577X
polymorphism of the ACTN3 gene (rs1815739; Del
Coso et al, 2019). ACTN3 is responsible for
encoding the protein alpha-actinin-3, which is
primarily found in fast-twitch fibers in the Z-line of
skeletal muscles favoring the ability to generate
strong and powerful muscle contractions.
Depending on the genotypical expression of
ACTNS3, alpha-actinin 3 is encoded. While a
homozygous XX genotype encodes a stop-codon
and therefore does not lead to expression of the
protein, the homozygous RR genotype leads to
expression of alpha-actinin 3. Accordingly,
knowledge of the genotype allows conclusions to
be drawn, for example, about muscle fiber
properties. For instance, in ACTN3, previous
studies have shown that male and female elite
sprint athletes have significantly higher
frequencies of the R allele than controls (Yang et al.,
2003).

In their review, Maciejewska-Skrendo et al.
(2019) described further SNPs and their
physiological background for associations with
power performance, of which some are also
included in this paper: these are SNPs associated
with skeletal muscle structure and function (e.g.,
the Dystrophin - DMD - rs939787 polymorphism

Journal of Human Kinetics, volume 95, January 2025

or the Myosin phosphatase Rho interacting protein
- MPRIP - rs6502557 polymorphism), involved in
blood pressure control (e.g., the ACE or the
Angiotensinogen - AGT -  Met235Thr
polymorphism), that are regulators of energy
metabolism and cellular homeostasis (e.g., the
Uncoupling protein 2 - UCP2 - Ala55Val or the
Hydroxysteroid = 17-beta  dehydrogenase -
HSD17B14 - rs7247312 polymorphism), as well as
SNPs encoding factors that control gene expression
by rearrangement of chromatin fibers and mRNA
stability (e.g., the 5-Methyltetrahydrofolate-
homocysteine methyltransferase reductase -
MTRR - A66G polymorphism) or by modulating
cellular signaling pathways (e.g., Inositol
hexakisphosphate kinase 3 - IP6K3 - rs6942022
polymorphism).

In addition to investigating the
relationship between individual SNPs, more recent
studies use polygenic scores to predict power
performance as a complex trait (McAuley et al,,
2024). For example, Ruiz et al. (2010a) compared
polygenic scores including multiple SNPs such as
ACE, ACTN3, and AGT between elite track and
field power athletes and non-athletic controls,
finding a significantly higher score in power-
related athletes. Also, Petr et al. (2022) explained
26% of the variance in jump performance and
isokinetic strength wusing a polygenic score
regression. Recent studies indicate that the
relationship between the athletes’ genotype and
performance phenotypes may differ between
genders. Willems et al. (2017), for instance, found
stronger associations between a polygenic score
and grip strength in males compared to females. To
capture potential gender differences in our data,
we calculated gender-specific polygenic scores and
conducted analyses separately for males and
females.

In summary, several studies have
investigated the role of SNPs in power
performance (Ahmetov et al., 2022). Nonetheless,
studies often differ in terms of their methodology
(e.g., statistical analysis or polygenic score
calculation). Earlier studies focused primarily on
frequency-based approaches comparing elite- vs.
non-elite athletes in power-related sports without
objectifying the phenotype. Also, some studies still
provide contradictory findings in the relationship
between the genotype and the phenotype (Yang et
al., 2023). As argued by Zentgraf and Raab (2023),
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the genotype is not linearly related to the
phenotype, the relationship between both may be
altered by epigenetics, environmental factors,
training volume/content as well as nutrition (Guest
et al., 2019). However, the authors suggest that
knowledge of the relationship between the
genotype and the phenotype could be used for
individualized training prescriptions in elite
sports. To enhance the understanding of the
interaction between the genotype and the
phenotype, this study aimed to answer the
question to what extent the genotype can predict
phenotypical power performance in elite athletes.
Therefore, we used a candidate-gene approach
including 23 SNPs that have already been related
to power performance in previous studies. A
comprehensive overview of the investigated SNPs
can be found in Table 1. Based on the literature
provided in Table 1, we expected to find
correlations between the included SNPs and power
performance. Furthermore, based on Petr et al.
(2022), we expected to explain some variance in
power performance using polygenic scores.

Methods

Participants

Two  hundred seventy-eight (278)
professional athletes (agemal=18.72+3.31 years,
agetemale = 18.08 + 4.12 years; 3 x 3 basketball n =18
male, n =20 female; ice hockey n =65 male, n =23
female; gymnastics n=18 female; trampoline
n =13 male, n =12 female; volleyball n =60 male,
n =49 female) participated in this study. Athletes
were included if they were part of the national
squad and were excluded in the event of an injury
at the time of testing. Prior to testing, athletes
received detailed written and verbal information
about the potential benefits and risks associated
with this study. Written consent was obtained from
each participant (additionally from parents for
minors). The study protocol was approved by the
Institutional Ethics Committee of the Justus Liebig
University Giessen (ethical approval number: AZ
55/22; approval date: 10 May 2022) and was in
accordance with the Declaration of Helsinki for
human research.

Study Approach

The present study was conducted using a
cross-sectional design to investigate the
relationship  between genes and power
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performance. To assess power performance, a 10-
m sprint as well as a countermovement jump test
(CM]) were performed. All tests were performed
between February 2022 and August 2023. At the
beginning of the measurement, blood samples for
subsequent DNA analysis were taken. After this,
athletes warmed up individually (running,
mobility, dynamic stabilization, and coordination
tasks) and data in measures were acquired in
permuted order as described below.

Candidate Genes and Polymorphism Selection

For the present study, a candidate-gene
approach was used including n=23 SNPs that
already had been associated with power
performance in previous studies (Table 1).

Genotyping

DNA was extracted from human whole
blood samples using the Chemagic Magnetic
Separation Module I (Perkin Elmer Chemagen
Technology Inc., Baesweiler, Germany). In a next
step, genotyping was performed using the
[llumina Global Screening Array + Medical Disease
+ Psych content (GSAv3.0 + MD + Psych; Illumina
Inc, San Diego, CA, USA). All Ilaboratory
procedures were conducted according to the
manufacturer's instructions. SNP array raw data
were then uploaded into, and genotypes were
exported from the GenomeStudio2.0 software
(Illumina, USA).

Total Genotype Score Calculation

For polygenic analyses, gender-specific
polygenic scores were calculated (based on the
work of Williams and Folland, 2008). For this
purpose, genotypes were scored from 0 to 2 in
relation to their contribution to power
performance based on previous studies (Table 1).
The homozygous genotype favoring power
performance received a score of 2, a score of 1
represented the heterozygous type and a score of 0
related to the homozygous alternative. The SNPs
were then summed and transformed into a 0-100
scale by dividing the total score by the maximum
possible score and multiplying by 100:

TGSsig = «(GS; + GS, + -+ GSy,)

100
(2xn)

According to previous research (Petr et al.,
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2022), we calculated polygenic scores only with
those SNPs that were significantly correlated with
power performance in our own analyses (either
with sprint or jump performance), named “Total
Genotype Score significant” (TGSsig) which we
used for polygenic analyses.

Power Performance Measures

For power performance assessment,
athletes performed a 10-m sprint as well as a CM]J
since in both diagnostics maximum force needs to
be generated as fast as possible (Markovic et al.,
2004; Mero et al., 1992). Athletes performed two
test trials for each measurement.

Jump Performance

For the evaluation of jump performance, a
CM]J was utilized. Athletes’” jump height in cm was
assessed using the OptoGait system (Microgate
Italy, Bolzano, Italy). Athletes were asked to
always keep their hands on their hips.
Additionally, they were asked to jump as high as
possible after a prior countermovement. Two trials
were performed. A third trial was performed if
athletes did not perform the previous jump
correctly (e.g., the hands were not kept on the hips)
or if both trials differed by more than 10% (this was
the case in less than 5% of all trials). The trial with
the maximum jump height was used for further
analysis.

Sprint Performance

Linear 10-m sprint times were assessed
using Microgate timing gates (Microgate Italy,
Bolzano, Italy). Athletes were asked to start in a
standardized position (small step, heels on the
ground, arms hanging down to the ground) 1 m
behind the start line as well as to sprint maximally
past the 10-m timing gate. Two trials were
performed. If an athlete did not perform the trial
correctly (e.g., leaving the standardized position
before sprinting) or if both trials differed by more
than 10%, a third trial was performed (this was the
case in less than 5% of all trials). The rest interval
between the subsequent trials equaled one minute.
The trial with the best (e.g., shortest) sprint time
was used for further analysis.

Statistical Analysis

All statistical analyses were conducted
using SPSS version 26 for Macintosh (IBM
Corporation, Armonk, USA). Chi-square tests (x?)
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were performed to check for Hardy-Weinberg
equilibrium as well as to evaluate genotype
distributions between genders. For Chi-square
tests, Bonferroni correction was used for adjusting
p-values (with the level of significance set at
p <0.002). To examine the relationship between
single SNPs and power performance, a Spearman
correlation using Spearman’s Rho (o) was
conducted. To investigate polygenic influence on
power performance variables, TGSsig was
calculated. The relationship between TGSsig and
the CM] as well as 10-m sprint performance was
examined using Pearson correlation analyses
(Pearson’s r). A linear regression model was used
to explore the predictive role of TGSsig in power
performance with the CMJ and sprint performance
as dependent variables. Effect sizes were
interpreted according to Cohen (1988). The
analyses were performed for each power
performance variable separately by gender, for
both male and female athletes. The level of
significance for correlation and regression analyses
was set at p <0.05.

Results

Genotype Distribution (between Genders)

Frequencies of the studied SNPs are
summarized in Table 2. After Bonferroni
correction, genotype distribution was in
accordance with the Hardy-Weinberg equilibrium
(p>0.002). Significant differences in genotype
distribution between genders were shown in the
frequency in DMD (x*2)=72.02, p<0.001,
@=0.51) with n=0 males and n=40 females
exhibiting the heterozygous AG genotype and
n=40 males and n=5 females showing the
homozygous AA genotype as well as in MPRIP
(x3(2)=13.29, p=0.001, ¢ =0.22) with n =52 males
and n = 20 females exhibiting the heterozygous AG
genotype.

Genotype-Phenotype Study

Correlations between single SNPs with the
CM] and 10-m sprint performance are displayed in
Table 3. For male athletes, a significant correlation
was found between AGT (p =0.228, p=0.005) and
the Vitamin D receptor rs1544410 polymorphism
(VDR; 0 =0.165, p = 0.042) with the CM]J as well as
between IP6K3 (0=-0.251, p=0.014) and 10-m
sprint performance. For female athletes, a
significant correlation was found between ACTN3
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(0=0.231, p=0.012), AGT (0=0.208, p=0.024),
UCP2 (0 =-0.199, p = 0.031), and the CM] as well as
between HSD17B14 (0 =-0.398, p =0.002), MTRR
(0=0.216, p=0.045), UCP2 (0=0.294, p=0.002)
and 10-m sprint performance.

Polygenic Study

TGSsig ranged from 16.67 to 100.0 a.u.
(including three SNPs: AGT, VDR & IP6K3) in
male and from 0.00 to 70.0 a.u. (including five
SNPs: ACTN3, AGT, HSD17B14, MTRR & UCP2)
in female athletes. TGSsig showed a significant
correlation with the CM]J and sprint performance
in males (CMJ r=10.328, p <0.001; 10-
m sprint r =-0.241, p = 0.004) as well as in females
(CMJ r=0.320, p<0.001; 10-m sprint r=-0.320,
p<0.001) indicating a moderate correlation
(Cohen, 1988).

For linear regression, male results are
shown in Figure 1, while female results are shown
in Figure 2. Assumptions for performing linear
regression were checked by visual inspection
(linearity, normality, and homoscedasticity).
Autocorrelation of residuals was verified using the
Durbin-Watson  statistic (male: CM]=1.50,
sprint = 1.68; female: CM]J = 1.25, sprint = 1.18). For
male athletes, the overall model indicated a
moderate goodness-of-fit for the CMJ (R?2=0.11,
adjusted R?=0.10) and a small to moderate
goodness-of-fit for the 10-m sprint prediction
(R2=0.06, adjusted R2=0.05) according to Cohen
(1988). TGSsig could significantly predict the CM]J
(F(1,151)=18.17, p<0.001) and 10-m sprint
performance (F(1, 137) = 8.47, p = 0.004). For female
athletes, the overall model indicated a moderate
goodness-of-fit  for the CMJ (R2=0.10,
adjusted R?=0.09) as well as for the 10-m sprint
prediction (R?=0.10, adjusted R? =0.09) according
to Cohen (1988). TGSsig could significantly predict
the CMJ (F(1,116)=13.27, p<0.001), and 10-m
sprint performance (F(1, 106) = 12.10, p < 0.001).

Discussion

The aim of the study was to answer the
question to what extent the genotype can predict
phenotypical power performance in elite athletes.
Power is a key variable for peak performance in
both team and individual sports and can
differentiate between elite and non-elite athletes
(Tsoukos et al., 2019). Therefore, it seems useful to
monitor power performance on a regular basis as
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well as to improve power performance. Previous
studies showed a relationship between SNPs such
as ACTN3 or ACE and power performance, and
were able to predict power performance based on
polygenic scores (Petr et al., 2022). Our findings
confirm this genotype-phenotype relationship.
Polygenic score regression used in our study
explained around 10% of the variance in power
performance independently of gender. This is
consistent with our expectations and in line with
findings from the study by Petr et al. (2022),
demonstrating that polygenic score regression
explained even 26% of variance in power
performance. Compared to their work, slightly less
variance was explained in our study. These
differences may partly be explained by the
dependent variable chosen in the study. While Petr
et al. (2022) used sergeant jump and isokinetic
strength measures as dependent power variables,
we focused on CM]J and sprint measures. When
comparing our findings with other domains such
as cognition, Davies et al. (2018) predicted up to
43% of variance in general cognitive function
using polygenic scores, whereas we could explain
variance to a greater extent. Our findings
strengthen the idea of power being partly heritable
which in our study amounts to 10% of explained
variance in performance by genotype. Obviously,
other aspects such as training modalities as well as
other individual features (Ullén et al.,, 2016)
determine power performance.

When investigating the relationship
between single SNPs and power performance, our
results showed a significant correlation of AGT
and VDR with the CM]J as well as between IP6K3
and sprint performance in male athletes. For
female athletes, a relationship was found between
ACTNS3, AGT, UCP2 and the CM] as well as
between HSD17B14, MTRR, UCP2 and sprint
performance. These findings are in line with
previous studies reporting associations of SNPs
with power performance and power athlete status
for AGT (Gémez-Gallego et al., 2009b), VDR bsml
(Bollen et al., 2023; Bozsodi et al., 2016), IP6K3
(Maciejewska-Skrendo et al., 2019), ACTN3 (Petr et
al, 2022; Yang et al, 2003), and HSD17B14
(Pickering et al., 2019). Sessa et al. (2011) found the
C allele of the UCP2 gene polymorphism
(rs660339) to be over-represented among Italian
power athletes. Further, Terruzzi et al. (2011)
found a higher frequency of the G allele in the
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A66G polymorphism of MTRR (rs1801394) in
athletes compared to controls indicating that
athletes had a genetic predisposition for muscle
growth. In contrast, we found significant
correlations between the T allele in UCP2 and the
A allele in MTRR with faster sprint times. Yet, this

is the first study combining UCP2 and MTRR
genotypes with power performance phenotypes in
elite athletes indicating that the T allele in UCP2
and the A allele in MTRR might also be related to
power performance in an elite athletes” population.

Table 1. Single nucleotide polymorphisms associated with power performance including the literature-

based genetic score count.

Genetic score count

Symbol Gene Locus Polymorphism ©,1,2) Reference
ACE Angiotensin I converting 17q23.3 154341 C/G CC,CG, GG Puthucheary et al.,
enzyme 2011
ACTN3 Actinin-alpha 3 11q13.1 rs1815739 T/C TT, CT, CC Yang et al., 2003
ADRB2 Adrenoceptor beta 2 5q31-q32 rs1042713 A/G AA, AG, GG Sawczuk et al., 2013
AGT Angiotensinogen 1g42.2 rs699 A/T AA, AG, GG Zarebska et al., 2013
N . Maciejewska-
COTL1 Coactosin-like protein 16q24.1 157458 G/A GG, AG, AA Skrendo et al,, 2019
CPNE5 Copine V 6p21.2 rs3213537 T/C TT, TC, CC Gmlh‘;ror;f etal,
. Ahmetov and
DMD Dystrophin Xp21.2 rs939787 G/A GG, AG, AA Fedotovskaya, 2015
Hypoxia inducible factor 1
HIF1A . 14923.2 1511549465 C/T CC TC TT Eynon et al., 2010
subunit alpha
HsDi7Bl4 ~ [wdroxysteroid 17:beta g 45 55 rs7247312 A/G AA, AG, GG Pickering et al., 2019
dehydrogenase 14
Ben-Z L,
IGF1 Insulin-like growth factor 1~ 12q23.2 rs35767 G/A GG, AG, AA n ggg‘ eta
IL6 Interleukin 6 7p21 151800795 C/G CC, GC, GG Ruiz et al., 2010b
Inositol hexakisphosphate Maciejewska-
IP6K3 Kinase 3 6p21.31 rs6942022 T/C TT, TC, CC Skrendo et al, 2019
Inositol 1,4,5-triphosph
ITPR1 nositol 1.45-triphosphate 5 | rs1038639 G/T GG, TG, TT Moreland et al., 2022
receptor type 1
Myosin phosphatase Rh Maciejewska-
MPRIP yosin phosphatase Bho 47011 2 156502557 G/A GG, AG, AA acigewsia
interacting protein Skrendo et al., 2019
Methylenetetrahydrofolate
MTHFR 1p36.22 rs1801131 T/G TT, TG, GG Zarebska et al., 2014
reductase
5-Methyltetrahydrofolate-
MTR homocysteine 1q43 rs1805087 A/G AA, AG, GG Terruzzi et al., 2011
methyltransferase
5-Methyltetrahydrofolate-
MTRR homocysteine 5p15.31 rs1801394 A/G AA, AG, GG Terruzzi et al,, 2011
methyltransferase
reductase
L Gomez-Gallego et
NOS3 Nitric oxide synthase 3 7q36.1 rs2070744 C/T CC, CT, TT al. 20094
PPARA Per'0x1some proliferator- 2241331 154253778 G/C GG, CG, CC Maciejewska-
activated receptor alpha Skrendo et al., 2021
PPARG Pe.r0x1some proliferator- 3p25.2 151801282 C/G CC,CG, GG Drozdovska et al.,
activated receptor gamma 2013
TRHR Thyrotropin-releasing 8q23.1 157832552 C/T CC, TC, TT Miyamoto-Mikami
hormone receptor etal., 2017
ucP2 Uncoupling protein 2 11q13.4 15660339 A/G AA, AG, GG Sessa et al., 2011
VDR Vitamin D receptor 12q13.11 151544410 C/T CC, TC, TT Bozsodi et al., 2016

Note: The genetic score count is based on the cited reference. Since we found opposite correlations for UCP2 and
MTRR, the score for UCP2 and MTRR was inverted before it was used for calculating the polygenic score (see the
results section).
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Table 2. Genotype frequencies of all SNPs between male and female athletes.

Gene variant (SNP) Genotype Male (n =156) Female (n =122) p
ACE (n/%) CC, CG, GG 41 (26.3%), 82 (52.6%), 33 (21.2%) 28 (23.0%), 63 (51.6%), 31 (25.4%) 0.652
ACTNS3 (/%) TT, CT, CC 24 (15.4%), 73 (46.8%), 59 (37.8%) 21 (17.2%), 59 (48.4%), 42 (34.4%) 0.821
ADRB2 (/%) AA, AG, GG 32 (20.5%), 59 (37.8%), 65 (41.7%) 16 (13.1%), 57 (46.7%, 48 (39.3%) 0.169
AGT (n/%) AA, AG, GG 42 (27.6%), 79 (50.6%), 34 (21.8%) 44 (36.1%), 51 (41.8%), 27 (22.1%) 0.256
COTL1 (1/%) GG, AG, AA 122 (78.2%), 32 (20.5%), 2 (1.3%) 96 (78.7%), 24 (19.7%), 2 (1.6%) 0.958
CPNES5 (1/%) TT, TC, CC 4 (2.6%), 39 (25.0%), 113 (72.4%) 3 (2.5%), 24 (19.7%), 95 (77.9%) 0.568
DMD (/%) GG, AG, AA 116 (74.4%), 0 (0%), 40 (25.6%) 77 (63.1%), 40 (32.8%), 5 (4.1%) <0.001
HIF1A (n/%) CC, TC TT 131 (84.0%), 24 (15.4%), 1 (0.6%) 97 (79.5%), 22 (18.0%), 3 (2.5%) 0.363
HSD17B14 (n/%)  AA, AG, GG 127 (81.4%), 26 (16.7%), 2 (1.3%) 107 (87.8%), 15 (12.3%), 0 (0%) 0.251
IGF1 (n/%) GG, AG, AA 94 (60.3%), 52 (33.3%), 10 (6.4%) 81 (66.4%), 39 (32.0%), 2 (1.6%) 0.131
TL6 (1/%) CC, GC, GG 20 (12.8%), 71 (45.5%), 65 (41.7%) 26 (21.3%), 61 (50.0%), 35 (28.7%) 0.039
TP6K3 (11/%) TT, TC, CC 0 (0%), 31 (19.9%), 125 (80,1%) 0(0%), 14 (11.5%), 108 (88.5%) 0.059
ITPR1 (/%) GG, TG, TT 44 (28.2%), 82 (52.6%), 30 (19.2%) 36 (29.5%), 67 (54.9%), 19 (15.6%) 0.730
MPRIP (1/%) GG, AG, AA 102 (65.4%), 52 (33.3%), 2 (1.3%) 95 (77.9%), 20 (16.4%), 7 (5.7%) 0.001
MTHER (1/%) TT, TG, GG 66 (42.3%), 73 (46.8%), 17 (10.9%) 58 (47.5%), 55 (45.1%), 9 (7.4%) 0.504
MTR (1/%) AA, AG, GG 102 (65.4%), 43 (27.6%), 11 (7.1%) 75 (61.5%), 43 (35.2%), 4 (3.3%) 0.194
MTRR (1/%) AA, AG, GG 29 (18.6%), 78 (50.0%), 49 (31.4%) 21 (17.2%), 64 (52.5%), 37 (30.3%) 0.914
NOS3 (1/%) CC, CT, TT 18 (11.5%), 81 (51.9%), 57 (36.5%) 16 (13.1%), 60 (49.2%), 46 (37.7%) 0.876
PPARA (n/%) GG, CG, CC 94 (60.3%), 59 (37.8%), 2 (1.3%) 70 (57.4%), 45 (36.9%), 7 (5.7%) 0.116
PPARG (1/%) CC, CG, GG 130 (83.3%), 24 (15.4%), 2 (1.3%) 88 (72.1%), 32 (26.2%), 2 (1.6%) 0.076
TRHR (/%) CC, TC, TT 74 (47.4%), 71 (45.5%), 11 (7.1%) 69 (56.6%), 37 (30.3%), 16 (13.1%) 0.021
UCP2 (/%) AA, AG, GG 34 (21.8%), 73 (46.8%), 49 (31.4%) 24 (19.7%), 48 (39.3%), 50 (41.0%) 0.249
VDR (/%) CC, TC, TT 59 (37.8%), 70 (44.9%), 27 (17.3%) 50 (41.0%), 56 (45.9%), 16 (13.1%) 0.616

Note: Significant differences between male and female athletes after Bonferroni-correction (p < 0.002) are

displayed in bold.
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Table 3. Correlations between single SNPs with the countermovement jump (CM]J) and sprint performance

for male and female athletes.

Gene CM]J - male Sprint — male CM]J - female Sprint - female
variant

(SNP) P e P e 4 e P e
ACE 0.401 -0.068 0.386 0.074 0.747 0.030 0.189 -0.127
ACTN3 0.975 -0.003 0.761 0.026 0.012 0.231 0.223 -0.118
ADRB2 0.512 0.053 0.130 -0.129 0.140 0.137 0.331 -0.095
AGT 0.005 0.228 0.095 -0.142 0.024 0.208 0.598 -0.051
IL6 0.101 0.101 0.685 -0.035 0.835 0.019 1.000 0.000
NOS3 0.839 -0.017 0.474 -0.061 0.555 -0.055 0.600 0.051
TRHR 0.114 -0.128 0.499 0.058 0.608 0.048 0.932 —-0.008
PPARA 0.290 -0.086 0.349 0.080 0.687 -0.037 0.577 -0.054
COTL1 0.342 0.077 0.103 -0.139 0.763 0.028 0.288 -0.103
CPNE5 0.760 0.025 0.852 0.016 0.347 0.087 0.154 -0.138
DMD 0.439 -0.063 0.627 0.042 0.461 -0.068 0.474 0.070
HIF1A 0.802 0.020 0.580 -0.047 0.844 0.018 0.568 -0.056
HSD17B14 0.845 0.016 0.258 0.097 0.574 0.052 0.045 -0.194
IGF1 0.534 0.051 0.981 -0.002 0.761 -0.028 0.231 -0.116
IP6K3 0.281 0.088 0.042 -0.172 0.360 0.085 0.712 0.036
ITPR1 0.509 0.054 0.189 -0.112 0.703 0.036 0.749 -0.031
MPRIP 0.065 0.150 1.000 0.000 0.104 -0.150 0.819 0.022
MTHEFR 0.837 0.017 0.287 -0.091 0.541 -0.057 0.898 -0.012
MTR 0.795 -0.021 0.090 -0.144 0.255 0.106 0.088 -0.165
MTRR 0.171 0.111 0.842 -0.017 0.512 -0.061 0.025 0.216
PPARG 0.766 0.024 0.784 -0.023 0.790 0.025 0.420 0.078
UCP2 0.821 0.018 0.429 0.068 0.031 -0.199 0.002 0.294
VDR 0.042 0.165 0.215 -0.106 0.947 0.006 0.871 -0.016

Note: Significant correlations are displayed in bold.
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Figure 1. Scatterplot between TGSsig with the countermovement jump (CM]J) and sprint performance for
male athletes.
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Figure 2. Scatterplot between TGSsig with the countermovement jump (CM]J) and sprint performance for
female athletes.

No significant correlations were found for
the following SNPs neither in male nor in female
athletes: ACE, Adrenoceptor beta 2 - ADRB2
Glyl6Arg, Coactosin-like proteinl- COTL1
rs7458, Copine V - CPNE5 rs3213537, DMD,
Hypoxia inducible factor 1 subunit alpha - HIF1A,
Insulin-like growth factor 1 - IGF1 Pro582Ser,
Interleukin 6 - IL6 -174 G/C, Inositol 1,4,5-
triphosphate receptor type 1 - ITPR1 rs1038639,

MPRIP
reductase

rs6502557, Methylenetetrahydrofolate
- MTHFR A1298C, 5-
methyltetrahydrofolate-homocysteine
methyltransferase - MTR A2756G, Nitric oxide
synthase 3 - NOS3 -786 T/C polymorphism,
Peroxisome proliferator-activated receptor alpha -
PPARA 1rs4253778, Peroxisome proliferator-
activated receptor gamma - PPARG Prol2Ala, and
Thyrotropin-releasing hormone receptor - TRHR
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rs7832552. This is only partly consistent with
previous studies in which correlations between
these SNPs and power performance have been
reported (Table 1 for specific references). However,
our findings add to the literature given that there
are inconsistencies in the relationship between
SNPs and power performance variables for the
mentioned SNPs. Although ACE is a well-studied
polymorphism  with studies indicating a
relationship  with endurance and power
performance (Ahmetov et al., 2022), Yang et al.
(2023), for example, did not find significant
correlations between ACE as well as ACTN3
polymorphisms and muscle power in Chinese elite
and sub-elite athletes. In addition, some relations
are based on power athlete status in which the
genotype was compared between elite and sub-
elite athletes without relating SNPs to objective
power performance variables. As described by
Hagberg et al. (2011), small sample sizes may also
be limiting which is, however, an eminent factor in
the elite athletes” population.

Furthermore, some gender-specific aspects
emerged in our analyses. While there was a
significant relationship between AGT and CM]
performance in males as well as in females, some
relationships were only evident in male but not in
female athletes, and vice versa. For example,
ACTN3 was only related to CM] performance in
females but not in males. This indicates that the
relationship  between  specific SNPs and
phenotypical power performance may differ
between genders. This observation is in line with
previous studies (Landen et al., 2019). For example,
Min et al. (2009) found associations between ACE
and race distance in male but not in female athletes.
In accordance with this, Willems et al. (2017) found
stronger associations between a polygenic score
and grip strength in males compared to females.
However, when looking at the results of our
regression analysis, the explained variance did not
differ substantially between genders, since we
were able to explain 10% of variance in the CM]J
and sprint performance in both genders. Thus,
differences between sexes are not completely clear
and should be addressed in future investigations.
Concerning genotype frequencies, a difference
between genders was shown in DMD and MPRIP.
Although we only found a small effect for MPRIP,
our analyses show a large effect for DMD. Since
DMD is located on the X-chromosome (sex

Journal of Human Kinetics, volume 95, January 2025

chromosome; Monaco et al, 1986), no
heterozygous genotype exists in males. While
females carry two X-chromosomes and males one
X- and one Y-chromosome, no heterozygous
genotypes can be found as the genetic information
of the second X-chromosome is missing.

In summary our findings further support
the idea that performance is partly heritable.
However, our results suggest that the genotype
only partially predicts power performance. Factors
such as training modalities (i.e., the way athletes
train) may play a crucial role in power
performance. Given the importance of power for
elite performance, the primary goal in elite sports
is to maximize power performance. This is also one
of the objectives of the in:prove project, in which
these findings are to be used in future to develop
individualized training prescriptions. Such an
approach is in line with previous research that has
shown the benefits of tailored training
prescriptions considering the athletes’ genotype
(Jones et al., 2016). Further longitudinal studies are
required to investigate the role of the genotype in
individual training adaptations as well as the
relationship with the existing field approaches
(e.g., force-velocity profiling; Morin and Samozino,
2016).

Conclusions

Significant correlations were found
between ACTN3, AGT, UCP2, VDR and the CM]J
as well as between HSD17B14, IP6K3, MTRR,
UCP2 and 10-m sprint performance. The athletes’
genotype could explain 10% of variance in power
performance. This strengthens the idea of power
being partly heritable, however, results indicate
that the genotype only partially, by 10%,
determines power performance. The role of the
genotype in the individual performance
development should be investigated in future
studies.
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