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Section II — Exercise Physiology and Sports Medicine

Delayed Effects of Different Velocity Loss-Based Resistance
Training on Autonomic Regulation, Sleep Quality
and Muscle Soreness

by
Juan P. Medellin Ruiz !, Oriol Abellin-Aynés >*, Diana P. Garcia 3,
Luis M. Martinez-Aranda *°

Resistance training has been shown to be a stressor factor on the autonomic nervous system, and these changes
can be detected by heart rate variability (HRV) analysis. The aim of the present study was to evaluate the delayed effects
of velocity loss-based resistance training strategies on heart rate variability (HRV), the sleep quality index (SQI) and
delayed onset muscle soreness (DOMS). Fourteen men performed daily recordings. After a baseline period of 14 days of
no training, they performed one session per week of resistance training focused on lower body exercise (squats) based on
movement velocity. Three resistance training sessions composed of four sets up to 10%, 20% and 40% of velocity loss
were performed each week of the study. Statistically significant changes (p < 0.05) after 24 hours of training were found
in DOMS, and HRV wvariables, specifically in RR intervals (RR), root mean square of successive differences of RR
intervals (RMSSD), and the percentage of successive RR intervals that differed by more than 50 ms (pNN50), between
40% of velocity movement loss and the rest of conditions. We can conclude that greater losses of execution velocity may
result in greater internal load stimuli according to the autonomic modulation measured by HRV. RR, RMSSD and
pNN50 seem to be the most sensitive indicators of HRV to fatigque produced by resistance training. This research opens
the door to the study of HRV behavior related to resistance training. New research possibilities are raised by measuring
the effect of quiding resistance training by means of HRV behavior.

Keywords: resistance training; autonomic nervous system; velocity-based training; physiologic monitoring; 2-point
method

Introduction will cause a controlled loss of homeostasis and,
S o therefore, initiating adaptive processes, that is

The individual response to training has known as the Selye’s General Adaptation
Syndrome (Cunanan et al., 2018) or the principle of
recovery. Finally, to maintain the state of organic
adaptation, the principle of progressive loads

indicates that the training stimulus must be

been proposed as one of the principles of this
practice, since not all participants respond in the
same way to training loads. In fact, the correlation
between training stimulus and the corresponding
physiological responses has been shown to be
highly individual (Roos et al., 2013). Thus, a correct
training load is a key factor when optimizing this
response. Likewise, an adequate recovery period

modified based on intensity, volume, frequency
and density; and these changes will maintain a
state of fatigue that must be controlled through
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recovery strategies, avoiding a diminished
functional capacity at key moments (Halson, 2014)
that can affect optimal performance.

Greater control of the training process
using new tools for monitoring the athlete's
recovery status leads to an increasingly effective
preparation  process, especially in high-
performance sports, where the results can be
defined by a very small margin. The analysis of the
state of the autonomic nervous system (ANS) by
means of heart rate variability (HRV) has been
commonly used as a tool to manage the training
load (Achten and Jeukendrup, 2003) and to
endurance training prescription (Carrasco-Poyatos
et al., 2022).

The physiological basis to justify the use of
HRYV as a tool to analyze and to guide training is
because the ANS describes the automatic
regulation of body functions from sympathetic and
parasympathetic nerves (Aubert et al., 2003). The
ANS response to the execution of moderate
physical exercise occurs with the decrease of the
vagal tone and the increase of the sympathetic one;
therefore, once the physical activity is finished,
there is a rapid restoration of the parasympathetic
function to the basal state (Palak et al., 2013).
However, very intense or prolonged training loads
reverse the ANS reaction, giving predominance to
the post-exercise sympathetic activity, this being
an unfavorable reaction to the vegetative activity
of the body (Palak et al., 2013).

Given the control of the ANS in the heart
rhythm, the study of HRV has been developed as a
function of the time elapsed between each RR
interval, allowing evidence of co-regulation
(neuromodulation) of cardiac function by the
sympathetic and parasympathetic nerves (Yanlin
et al.,, 2020). Currently, the monitoring of HRV is
used as a method for evaluating the adaptation to
exercise (Buchheit et al., 2010), being its application
in training a marker of the internal load (Bourdon
et al., 2017). Mainly, the intensity over the volume
has been proposed as the component of the load
that most affects ANS regulation (Yanlin et al,,
2020); thus, HRV becomes a useful marker for long-
term monitoring (Roos et al., 2013). In addition,
and taking into account that the principle of
supercompensation training demands an adequate
recovery to achieve an increase in sports
performance in an orderly and systematic process,
HRYV is useful to review the acute and chronic
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responses of the organism, being probably
sensitive to both positive and negative adaptations
(Buchheit, 2014); and, this way, it is possible to
adjust training loads individually on a daily basis.

Moreover, it has recently been identified
that aerobic exercise prescription guided by HRV
is effective (Chamera et al., 2023; Diiking et al.,
2021; Granero-Gallegos et al., 2020; Manresa-
Rocamora et al., 2021; Medellin Ruiz et al., 2020).
However, only a fraction of the available literature
has focused on resistance training. First, it was
proposed that after resistance exercise (8 exercises,
3 sets and 10 RM and 90 s of rest between sets) there
is a greater vagal suppression of the ANS versus
endurance exercise (Heffernan et al., 2006).
Kingsley and Figueroa (2014) reviewed the acute
effects of resistance exercise (4-11 exercises, 1-5
sets, 30-100% 1RM, 1-20 repetitions and 45-120-s
rest intervals) on HRYV, finding a prolonged
decrease in vagal modulation in healthy young
adults. Later, an update confirmed that 30 min
after a resistance training session (1-10 exercises,
1-40 sets, 50-100% 1RM, 1-34 repetitions and 30-
720-s rest intervals), a general autonomic decrease,
withdrawal = of  cardiac  parasympathetic
modulation, and activation of cardiac sympathetic
modulation were observed, and some components
of the training load may also affect or attenuate
these modifications (Marasingha-Arachchige et al.,
2020). Nevertheless, previous research does not
show how long these changes can be maintained.
It has been reported that 24 h after different types
of resistance training (4 exercises, 2—4 sets, 50-90%
1RM, maximum repetitions and 45-180-s rest
intervals), HRV recovers completely (Formalioni et
al., 2020), but more studies are needed to support
this statement. In the spirit of further investigating
the possibility that HRV, DOMS and quality of
sleep may reflect the level of fatigue following
resistance training, the purpose of this study was
to evaluate the delayed effects 24 and 48 h after
different velocity loss-based resistance training
strategies on HRV, DOMS and quality of sleep. It
was hypothesized that HRV, DOMS and quality of
sleep would decrease as an effect of a high internal
load caused by a demanding training session.

Methods

Participants

Fourteen  physically  active  men
participated in this study (age: 22.4 + 2.1 years;
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body height: 171.9 + 5.2 cm; body mass: 66.2 + 6.9
kg). The inclusion criteria were: being over 18
years, being free of musculoskeletal injuries or
illnesses that could impede proper physical
performance, and not to perform additional
training. Participants performed three
familiarization sessions of HRV measurements,
Karolinska Sleep Diary (KSD) questionnaire
procedures, and training methodology based on an
eccentric phase at controlled velocity, and a
concentric phase at maximum velocity. During the
following two weeks, participants completed a
baseline period, recording the behavior of HRYV,
KSD and delayed onset muscle soreness (DOMS)
on a daily basis, obtaining the mean normal value
when the organism was not under significant
fatigue conditions. Then, participants were
divided into three groups, and each group
performed in random order one type of resistance
training session once a week (Figure 1). A
standardized warm-up protocol was performed,
and this included joint mobility and several
repetitions of the specific exercise with low loads.
Every session was performed in the morning,
under constant environmental conditions (16-18°C
and ~70% humidity). In addition, the control
criteria for the participants were to maintain
regular diet, hydration and rest, and not to ingest
caffeine or alcohol. In the same way, any additional
external training sessions were not allowed.

All participants signed an informed
consent form before starting the study, and this
was approved by the Catholic San Antonio
University’s Ethic Committee (approval code: N°
7610-CE52003; approval date: 29 May 2020).
Likewise, the study was conducted in accordance
with the recommendations of the Declaration of
Helsinki.

Measures

In order to avoid alterations that could
affect the rest period and, therefore, the results, the
KSD was used to obtain the sleep quality index
(SQI), calculated as a mean score for the following
items: ease at falling asleep, sleep quality, calm
sleep, and slept throughout the night (Akerstedt et
al., 1994). DOMS was evaluated by means of a
Likert scale with six numbered levels of pain
perception (Vickers, 2001).

HRV recordings were taken every
morning upon awakening, after emptying the
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bladder, in the supine position, with eyes closed,
spontaneous breathing, without making any
movement during the recording. The recording
had two minutes of stabilization, followed by six
minutes of recording (Javaloyes et al., 2019). This
was captured through the Elite HRV© application,
available for smartphones with a compatible Polar
H7 chest strap (Polar Electro, Kempele, Finland).
Finally, the Kubios Standard© (v.3.5) software
(Kubios Oy, University of Eastern Finland, Kuopio,
Finland) was used for HRV analysis.

The following variables were evaluated:
RR intervals (RR), root mean square of successive
differences of RR intervals (RMSSD), the
percentage of successive RR intervals that differed
by more than 50 ms (pNNb50), standard deviation
of normal-to-normal bits (SDNN), the natural
logarithm of high-frequency 0.15 to 0.4 Hz (HFIn),
a stress score (SS), sample entropy (SampEn), and
the sympathetic-parasympathetic index (5/Ps)
(Orellana et al., 2015; Shaffer and Ginsberg, 2017).

Design and Procedures

A comparative and randomized cross-over
experimental design was used to identify the
delayed effects of three different resistance-
training sessions 24 and 48 h into recovery on
cardiac autonomic activity, sleep quality, and
DOMS in physically trained individuals.
Participants performed squat exercise on a Smith
machine in three different training sessions based
on movement velocity loss separated by one week.
The velocity-based training methodology was
used for monitoring all training sessions and tests
(Cui et al., 2024). Before each training session, a
1RM 2 point-test based on movement velocity was
performed to determine the 1RM (Garcia-Ramos et
al., 2018). All training sessions included four sets
with three minutes of rest between sets, and these
were performed at 60% of 1IRM. Also, the warm-up
consisted of joint mobility of the lower limbs: hip,
knees, and ankles, 10" each. There were also five
minutes of cycloergometer pedaling at 50 W and 70
rpm, followed by three sets of five repetitions of
squats with the weight of the bar, namely 30 kg,
were included; and then two sets at a progressive
concentric contraction velocity.

Each participant descended in a
continuous motion until the upper thighs were
below the horizontal plane, the posterior thighs
and legs contacting each other. The feet were
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positioned just below the weight projection of the
bar, with a straight back, and the gaze straight
ahead. The maximum downward velocity was set
at 0.50 and 0.70 m/s, while the upward velocity was
maximum. Participants were not allowed to lift
their heels off the floor or the trapeze bar at any
time during the concentric phase of the movement;
if this occurred, that execution was eliminated and
repeated after three minutes. In each set, the
repetition with the highest mean propulsive
velocity (MPV) in the concentric phase was
registered for further analysis. Three repetitions
were performed with 30 kg and at least two
repetitions with body mass. Passive recovery time
between subsequent loads was established at three
minutes.

On the other hand, and in order to
calculate the training load, the greatest amount of
weight that could be lifted with the correct
technique (IRM) was identified, and this was
considered as the load projected at the mean
propulsive velocity, that is, 0.32 m/s (Sanchez-
Medina et al, 2017) according to the linear
regression equation (Loturco et al., 2016). Likewise,
the bar movement velocity was calculated using a
linear encoder (T-Force Dynamic Measurement
System; Ergotech Consulting S. L., Murcia, Spain),
and squat exercise was performed on a Smith
machine (H. A. Bicicletas S. A., Sportfitness,
Medellin, Colombia).

Finally, three training sessions were
performed with different percentages of
movement velocity loss, up to 10%, 20% and 40%.
All sessions were performed at 60% of the 1IRM
calculated before using the 2-point method, and
the training load was approximated to the nearest
whole number. The sessions consisted of four sets,
each ended when the participant exceeded the
percentage of velocity loss allowed. The rest
interval between sets was that of three minutes. At
this point, it is necessary to point out that the
investigator always supervised participants to
control the compliance with the protocol.

Statistical Analysis

The variables of HRV, SQI, DOMS and
repetitions were analyzed with the SPSS statistical
package V.24 (SPSS Inc., Chicago, IL, USA). This
software was used to calculate mean and standard
deviations. Normality analyses were performed
with the Shapiro-Wilk test. To study the main
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effects and interactions between time points in
each variable, we performed a one-way analysis of
variance. The pair comparisons were carried out
with the Bonferroni pos-hoc. A level of p <0.05 was
set to indicate statistical significance. Eta squared
partial (%) was calculated to assess the effect size
of the comparisons. All the results are presented as
mean * standard deviation.

Results

Significant effects (p <0.05) on RR, RMSSD,
PNNG5O0 (Figure 2) and DOMS (Table 2) after 24 h of
training with 40% of velocity movement loss were
found, and the changes found were related to the
baseline. Other variables calculated, such as
SDNN, HFIn, SS, SampEn and S/Ps (Table 1) did
not show significant changes; the weight of the bar
was maintained without relevant variations for the
three training sessions performed (55.79 + 13.62 kg
for 10%, 54.64 + 13.78 kg for 20%, and 53.93 + 13.25
kg for 40%); and the number of total and set
repetitions was significantly higher as the
percentage of movement velocity loss increased
(Figure 3). Considering a possible intersubject
variability of exercise response, Figure 4 illustrates
the differences among participants. Finally, no
statistical = differences were observed when
comparing the number of repetitions in different
sets at the same intensity (p > 0.05), and there were
no changes in sleep quality between the baseline
and 24 and 48 h post-training (Table 2).
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Figure 1. Experimental design.
Table 1. HRV variables unchanged.
Velocity loss (%) ANOVA
Variable  Time point 10% 20% 40% . , -
Mean + SD Mean + SD Mean + SD
Baseline 101.81 +32.53
SDNN 24h 101.95 + 35.13 96.97 +41.08 89.70 +47.44 1.363 0334  0.505
48h 93.42 +43.30 106.37 +33.79 106.78 + 44.23
Baseline 7.49 + 0.66
HFIn 24 h 7.18 £1.00 7.25+0.79 6.68 £1.23 4894 0.022 0.786
48h 7.06 +1.08 7.64+0.92 7.01+1.37
Baseline 46.57 £9.53
HFnu 24 h 33.62 +11.70" 4450 +17.35 36.79 +18.76 3989  0.038  0.749
48 h 42.03+17.49 52.42 +19.68 41.39+22.11
Baseline 9.12 £2.63
SS 24 h 8.46 +3.28 9.88 +4.88 10.58 +4.80 1.085  0.444  0.449
48 h 9.67 +3.65 8.36 +3.47 9.38 +6.37
Baseline 1.52+£0.16
SampEn 24h 1.38 £0.20 1.53 £0.36 1.32+0.35 1246 0376  0.483
48h 1.36 £0.43 1.46£0.32 1.29+£0.39
Baseline 0.21+0.11
S/Ps 24h 0.23+0.20 0.24+0.18 0.42 +0.41 3.471 0.054  0.722
48h 0.27 +0.18 0.18 +0.18 0.41+0.86

SDNN = standard deviation of normal-to-normal bits. HFIn = natural logarithm of high-
frequency (0.15-0.4 Hz). HFnu = relative power of the high-frequency band (0.15-0.4 Hz)
in normal units. SS = stress score. SampEn = sample entropy. S/Ps = sympathetic-
parasympathetic index. * p < 0.05 compared to baseline; 1 p < 0.05 compared to 24 h 40%.
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Table 2. Sleep quality index and delayed onset muscle soreness.

Time point Velocity loss (%) ANOVA
Variable 10% 20% 40% F » e
Mean+SD Mean+*SD Mean+SD
Baseline 4.38£0.47
SQI 24 h 4.50+0.48 4.52 £0.46 4.52+0.49 0.343 0.896 0.204
48 h 4.39+0.48 4.46 £0.47 4.48 £ 0.66
Baseline 0.12£0.18
DOMS 24h 1.86 £1.83 1.64 £1.65 2.86+1.75 6.749  0.008 0.835
48 h 1.64+191 1.00+1.18 2.64 +1.65
* p <0.05 compared to baseline
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Figure 2. HRV variables with changes A) Comparison of RR among baseline, 24 and
48 h across each type of training; B) Comparison of RMSSD among baseline, 24 and 48
h across each type of training; C) Comparison of pNN50 among baseline, 24 and 48 h
across each type of training.

RR = RR intervals. * p < 0.05 compared to baseline; RMSSD = root mean square of successive
RR interval differences. T p < 0.05 compared to 24 h 40%. pNN50 = percentage of successive
RR intervals that differ by more than 50 ms
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Discussion

The aim of the present investigation was to
evaluate the delayed effects of velocity loss-based
resistance training on HRV. To this end, fourteen
men performed daily recordings of HRV, SQI and
DOMS. Significant changes (p < 0.05) after 24 h of
training were found in DOMS and HRYV variables,
specifically in RR, RMSSD, and pNN50, between
40% of velocity movement loss and the remaining
conditions. The results show that training at 10%
and 20% velocity loss did not significantly modify
HRYV as previously reported by Formalioni et al.
(2020), where some training load components were
modified (the percentage of 1RM, the number of
sets and rest intervals between sets). However, it is
important to emphasize that, in the present study,
each workout consisted of only four sets of one
exercise (squat), thus the total number of
repetitions completed at 10% (18.93 +2.34) and 20%
(30.50 + 8.45) could have been insufficient to induce
significant fatigue (Figure 3). The same explanation
could refer to changes found in DOMS (Table 2).

In the same way, it has been proposed that
the increase in volume would affect RMSSD
(Marasingha-Arachchige et al., 2020); therefore, it
is necessary to explain that training with the
highest number of repetitions (40%: 53.93 + 14.53)
was more likely to have generated significant
changes in this variable in contrast to the other two
sessions. RMSSD has already been tested to
prescribe the recovery interval for resistance
training, and a higher weekly frequency of sessions
was found to maintain neuromuscular adaptations
(De Oliveira et al., 2019). Intense resistance training
has been shown to affect the natural logarithm of
RMSSD immediately afterwards; however, 24 h
later, the value is re-established, and the standing
measurement appears to be more co-relatable with
neuromuscular and perceptual markers of
recovery (Flatt et al., 2019). Similarly, a dosage
according to the character of the effort would be
useful. Pareja-Blanco et al. (2017) previously
compared two types of effort (total effort and half
effort), and their results showed that total effort
significantly affected HRV recovery after six hours.

Regarding the recovery process, it has
been reported that vascular occlusion exercises,
also known as Kaatsu training, show a shorter
autonomic recovery time than conventional
training (Okuno et al, 2014). Also, dynamic

resistance exercise demonstrates greater vagal
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modulation compared to static exercise (Roy et al.,
2020), which may cause a faster recovery compared
to static exercise. In short, different types of
resistance training strategies can affect the
autonomic response measured by HRV, making
evident marked sensitivity to changes.

On the other hand, the effects of resistance
training to muscle failure 24 h after its completion
have been previously studied, and, although a
significant decrease in 1RM was observed, no
changes in nocturnal HRV or sleep quality were
noted (Ramos-Campo et al., 2021). The protocols
used by Ramos-Campo et al. (2021) consisted of 4
sets of 10 repetitions to failure, and 5 sets of 10
repetitions with 2 reserve repetitions. Moreover,
both workouts used two exercises, one for the
upper and one for the lower body, at 75% of 1RM
and adding 40 repetitions per exercise. It was
found that only the session of 53.93 + 14.53
repetitions led to decreased HRV. However, no
baseline period was considered to determine an
average behavior of the ANS. In our study, we
included such a period in order to minimize the
risk of the high daily variability of HRV.

It was also reported that high and low
frequency values returned to their baseline levels
45 min after resistance training sessions consisting
of four exercises, three sets each, at 15RM,
regardless of the rest times used (Alemi et al.,
2022); for this case the high frequency also did not
show changes under any type of a training session.
This finding contrasts with another study where a
two-week intense resistance training protocol,
involving six hypertrophic exercises per session,
affected nocturnal RMSSD and high-frequency
power, averaged over three subsequent nights.
However, changes in HRV were found during a
single session with velocity-based resistance
training that allowed for a higher velocity loss
threshold, leading to more repetitions per set
(Kaikkonen et al., 2020).

In the same way, a high correlation of SS
and S/Ps with the rate of perceived exertion in
aerobic exercise has been previously reported
(Abellan-Aynés et al., 2019); however, in the
present study, these indices did not show
significant changes after training sessions, yet
DOMS was altered 24 h after training at 40% loss
of velocity. This may question the usefulness of SS
and S/Ps as indicators of internal loading in

resistance training.
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In the literature, other conditions have
been also reported concerning resistance training
and HRV. It has been described that the autonomic
cardiac response induced by resistance exercise
could be conditioned considering the amount of
muscle mass involved in the training session, being
more intense with a higher mass involved. This
effect lasted for more than 30 min, and the probable
reason was the greater muscle mass in the lower
limbs, but it is not clear whether the recovery was
similar or not (Isidoro et al., 2017). Regarding the
type of exercise, it is important to mention the
results presented by Alvarez-Herms et al. (2020),
where a protocol of six sets of 15-s continuous
jumps performed at three different simulated
altitudes did not alter HRV indicators 24 h later.
Therefore, efforts that last more than 20 min are
probably required to achieve an alteration in
autonomic homeostasis.

Finally, as a physiological hypothesis, we
believe that it is likely that stimulation of the c-
fibers (nociceptors) (Borghi et al., 2022) causes an
increase in the sympathetic afferent impulse,
which would lead to an increase in chronotropism,
and therefore a decrease in HRV. This theory is
based on the fact that HRV is affected by the
behavior of c-fibers (Forstenpointner et al., 2020),
in this case, perhaps by a mechanism very similar
to the viscerosomatic inhibition by exercise that
occurs in the lungs (Gandevia et al., 2000).

There are some limitations of this study
which should be acknowledged. Although our
study participants were physically active, sports
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students, their experience with resistance training
was diverse, which could have influenced post-
training responses. Likewise, although training,
familiarization and recommendations were
provided, HRV records were taken by the
participants themselves. As future lines of research
in this area, we propose to evaluate the effects
between the upper and the lower body to clarify
possible effects by muscle groups and to
experiment with different monitoring protocols
and adjustment of the load according to the
behavior of the muscles.

Conclusions

The present study concludes that
resistance training with greater losses of
movement velocity may result in greater internal
load stimuli, according to the autonomic
modulation, as measured by HRV. Likewise, RR,
RMSSD and pNN50 indicators seem to be most
sensitive 24 h after a resistance training session. In
the same way, it can be evidenced that using the 2-
point method to estimate the 1RM before training
is a useful and practical tool that allows adjusting
the training load to the state prior to the effort.
Similarly, there are significant differences in the
number of total repetitions between the resistance
training strategies according to the loss of
execution velocity (10%, 20% and 40%). The
strategy of 40% velocity loss generated a relevant
change in DOMS, and sleep quality was not
affected by any of the training sessions.
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